AR2Pro | 1

AR2Pro

AR2Pro | 2

Table Of Contents

User Guide 6
Overview 6
Run-time Designer Control 6

Introduction 6
Using Run-time Designer Control 7
Adding Run-time Designer to Visual Basic 8
Adding Run-time Designer to your Project 9
Working with the Designer at Run-time 12
Saving and Loading Report Layouts 15
Using the Designer Events 18
Using Scripting 22
Custom Toolbars and Menus 25
Included Sample Projects 25
Deployment and Distribution 26
WebCache Service and ISAPI DLL 26
Introduction 26
Installation 26
Deployment 26
Using the WebCache Service 27

Developers Reference 28

ActiveReports Run-time Designer 28

ARDesigner 28
Properties 29
GridSnap 29
GridVisible 29
GridX 30
GridY 30
IsDirty 31
Locked 31
Report 32

RulerUnits 33

SelectedObjects
ToolbarsAccessible
ToolbarsVisible
ToolboxItem

Methods
ExecuteAction
GetSectionFromPoint
LoadFromObject
NewlLayout
QueryStatus
SaveToObject

Events
Alert
ContextMenuOpen
Error
LayoutChanged
SelChange
StatusChange
ValidateChange

Selection Methods
Count
Item
WebCache Service
WebCache

CacheContent

Cacheltem

IsCached

Item

Remove

RemoveAll

Count

WebCacheltem

AR2Pro | 3

33
34
34
35
36
36
37
38
39
39
41
41
42
43
44
44
45
45
47
48
48
48
49
49
49
50
51
52
52
52
53
53

Data
Header
Id
Persistence
TimeOut
WebCacheWorkerThread
TotalTimeServicingRequest
Threadld
NumberOfRequest
AveragePerRequest
WebCacheWorkerThreads
Count
Item
Property List Control
PropList Control
Sorted
ShowToolbar
ShowReadOnlyProp
ShowObjectCombobox
ShowDescription
Properties
hwnd
ForeColor
Font
Enabled
Categorized
BorderStyle
BackColor
AllowColumnResize
SelectObjects
Refresh
Clear

AddObject

AR2Pro | 4

53
54
55
55
56
56
57
57
58
58
59
59
60
60
60
61
61
62
62
63
63
64
64
64
65
65
66
66
66
67
67
68
68

AR2Pro | 5

PropertyValidate 68
ObjectChanged 69
PropertyChanged 69
FetchDataDescription 69
FetchData 70
Error 70
ButtonClick 71
PropNode Object 71
AddEnum 71
ClearEnums 72
Category 72
Children 73
Description 73
Name 73
Type 74
Value 74
PropNodes Collection 75
Remove 75
Item 75
Count 76

Add 76

AR2Pro | 6

User Guide

User Guide

Overview

Run-time Designer Control
WebCache Service and ISAPI DLL

Overview

Overview

ActiveReports Professional Edition includes three components that allow you to provide custom reporting
solutions to your end users. These reporting solutions can range from a built-in customized report designer to
a complete reporting and information delivery server in Internet or intranet settings.

The components include:
1 Runtime Designer Control
1 WebCache Service and ISAPI DLL
1 Property List Control

Run-time Designer Control

Run-time Designer Control
Introduction

Using Run-time Designer Control

Introduction

Introduction

The run-time designer control allows you to host the ActiveReports designer your application and provide
end-user report editing capabilities. The control's methods and properties provides easy access to save and
load report layouts, monitor and control the design environment and customize the look and feel to the needs
of your end users.

Persistence API

The designer control's Report property provides access to the layout elements of the report, its sections and
controls. The persistence API allows you to save and load the report layout. It includes the following
properties and methods.

LoadFromObject loads the report layout from an existing report object into the designer.
SaveToObject, apply the new layout to an existing report object.

NewLlayout clears the current layout, including sections, controls and starts a new report layout. All
property settings are returned to default values.

IsDirty, this property returns whether the report has been modified since the last save or load operation. It
can be used to enable/disable a save button.
User Interface Customization

API's for User Interface customization have the goal of providing hooks into the designer that will let
developers attach their own custom menus, toolbars, field/database browsers, script editors, alert dialogs
and property sheets.

AR2Pro | 7

Toolbars and Menus

You can replace built-in menus and toolbars by first setting the ToolbarsVisible, ToolbarsAccessible properties
on the designer control to hide the built-in Ul.

All menu and toolbar commands are called actions. There are over 50 actions that are defined in the designer
control.

If you are using a pull method to update your toolbar and menu states using idle-time processing, you can
use the QueryStatus method to check if a certain action (such as Edit/Cut) is enabled/disabled,
checked/unchecked.

In addition, the designer control fires StatusChange event when the status of the tools change allowing you
to update the Ul to reflect these changes.

ExecuteAction method provides the ability to perform most of the designer functions with a single call.
Alternatively, actions that are not supported by ExecuteAction (ones that require a parameter such as color,
style and font settings) can be executed by setting the control or section properties directly using the Report
property.
Designer Surface
The grid settings can be modified using the following properties

1 GridX and GridY determine the number of grid points in each ruler unit.

1 GridVisible determines whether the grid is visible of not.

1 GridSnap specifies whether the controls should snap to the visible grid points.

1 RulerUnits allows you to select ruler units from either US or metric units.

Property Sheets

The runtime designer control allows you to replace the built-in property toolbox and provide your own
selection editing Ul. The SelChange event fires when the user changes the current selected object in the
designer. You can retrieve a list of the selected object using the SelectedObjects collection.

ActiveReports Professional includes a property listbox ActiveX called "Data Dynamics Property ListBox" that
can be used to create customized design environments based on your users needs.

Script Editor

The built-in syntax-highlighting script editor is invoked using the ExecuteAction method and the action code

ddActionViewCodeEditor. To replace it with your own editor, create your own toolbar/menu item and use the
ActiveReport.Script, Section.Script properties to get/set the script. The scripting language is can be set using
the ActiveReport.ScriptLanguage property.

Controls Toolbox

The toolbox contains the controls that can be placed on a section. You can create your own toolbox toolbar
and use the following properties and methods to interface with the designer:

ToolboxlItem property: Setting the Toolboxltem property initiates the control-add mode using the ProgID set
to the property. The user will use the rubber-band to select the area of the control and once the area is
selected the designer will add the control specified by ProgID and end the add mode by setting Toolboxltem
to an empty string.

ValidateChange Event: This event fires after any changes that are made to the report layout. It allows you to
control what the use can or cannot do in the designer control. Within the event code your can cancel the
layout change and revert it back to it's original state.

LayoutChanged Event: After the layout change (control addition, deletion is validated this event will fire with
changeType=ddLCControlAdd to notify the application that a new control has been added.
Alerts and Error Messages

ActiveReports runtime designer allows you to intercept runtime errors and alert messages and present the
user with custom notification Ul. For each error or alert message ActiveReport Designer control fires an Error
or Alert event with the message id and string and gives you the option to cancel the internal display when
you handle the messages.

Using Run-time Designer Control

Using the Run-time Designer Control
Adding Run-time Designer to Visual Basic
Adding Run-time Designer to your Project
Working with the Designer at Run time
Saving and Loading Report Layouts

Using the Designer Events

Using Scripting

Custom Toolbars and Menus

Deployment and Distribution

Adding Run-time Designer to Visual Basic

Adding Run-time Designer to Visual Basic

AR2Pro | 8

The end-user designer is an ActiveX control; the following steps describe how to include it in the Visual Basic

IDE:
1. Start Visual Basic.

2. Choose Project > Components (Ctrl-T).

Components

- | " o .«.I.I

[cdig

[Teic 1.0 Type Library
[Closewindaw OLE Contral madule
[[]Cantents OLE Cantral madule
[1CssEdP

[[1Data Dynamics ActiveReparts
}ata Dyvnamics Ackis

[[1Data Dynamics ActiveReparts Yiewer 2.0 i

[1Data Dynamics Property ListBox
[CJDHTML Edit Cantral for IES

[DiffMergecH Ackiver Contral module
[] Direct&nimation Library

[DiscoveryEngineCtrl 1.0 Type Library _I_I
| | -

| o

3. Choose Data Dynamics ActiveReports Run-time Designer.

Note: If the run-time designer entry does not appear in the list, make sure that

Selected Items Only

is not checked. If it still does not appear, make sure ARdespro2.dll is registered by running regsvr32 on

ARdespro2.dil.
4. Click OK to close the dialog box.

AR2Pro | 9

5. The run-time designer icon should appear in the toolbox.

Adding Run-time Designer to your Project

Adding Run-time Designer to your Project

1. Click on the run-time designer icon in the toolbox.

2. Place the control on the form (shown below) and size it accordingly.

w. Forml

=R

E 7 U |

E wplorer AL i g
E =B MainReport J =]
A El FageHeader
#-= Detail

[#-=1 PageFooter ﬂ =

. - -

(T |
U

:l A TR RS

3

B

[

i)

=
=
=

The run-time designer's appearance is the same as the ActiveReports ActiveX designer but the end user will
not have direct access to the reporting events in Visual Basic. Instead, the user will use VBScript or JScript to
handle the reporting events as needed. The run-time designer includes a syntax-highlighting editor for both
languages.

The following sample demonstrates adding the run-time designer to a Visual Basic project and using
ActiveReport's viewer control to view reports designed at run time.

1. Start a new Visual Basic standard EXE project.

AR2Pro | 10

2. Select the following components from Visual Basic's components list:
i Data Dynamics ActiveReports Runtime Designer
j Data Dynamics ActiveReports Viewer 2.0
i Microsoft Tabbed Dialog Control
3. Add the following references from Visual Basic's reference list:
i Data Dynamics ActiveReports 2.0

4. Select Form1 and set its properties as follows:

Name frmMain

Caption Simple Designer Project
Height 9465

Width 11295

5. Add a SSTab control to frmMain and set its properties as follows:

Height 9015
Left 0
Tabs 2
Top 0
Width 11175
6. Right-click on SSTabl and select properties.
7. Set the TabCaption for TabO to Run-time Designer.
8. Set the TabCaption for Tabl to Report Preview and select OK to close the tab control's property page.
9. Add the run-time designer to TabO and set its properties as follows:
Name ard
Height 8415
Left 120
Top 480
Width 10935

10. Add the viewer control to Tabl and set its properties as follows:

Name arv
Height 8535
Left 120
Top 360
Width 10935

11. frmMain should look like this:

AR2Pro | 11

im. Simple Designer Project

]

][] 4 = .

.
:It.!.llll

==

E »plarer = |:| C e
¥ E|--- M ainF eport J =

I &
Bt | i

nmm
I
)

L2 L -

B[U|

[
[
N

EH-= FageHeader
= Detai
[#-=1 PageFoater ﬂ =l

S o F ol

&

0

iy

1)

=
=
=

12. Add the following code to the Form_Load event:

Dimrpt As DDActiveReports2. ActiveReport

Private Sub Form Load()

End Sub

'Set active Tab to the designer
SSTabl. Tab = 0
Set rpt = New ActiveReport
"Activate all the tool bars
ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBSt andar (

ard. Tool bar sAccessi bl e = ddTBTool Box + ddTBAli gnment + ddTBExpl orer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBSt andar «

Note: When working with the designer, the toolbars cannot be customizing. The only available options

13.

14.

15.
16.

AR2Pro | 12

are ToolbarsVisible and ToolbarsAccessible. If the project requires custom toolbars, a third party toolbar
control will need to be substituted for the runtime designere s toolbars.

Add the following code to the SSTab1_Click event:

Private Sub SSTabl Click(Previ ousTab As | nteger)
Sel ect Case PreviousTab

Case Is =0
prepPrevi ew
Case Is =1

pr epDesi gner
End Sel ect

End Sub

Add the following code to prepare the viewer control and designer when its tab is selected:

Private Sub prepPreview)
On Error GoTo err Hndl
'Must be used to wites the designer's |ayout
"to the report so it can be previ ewed
ard. SaveToCbj ect rpt
rpt. Restart
"Run the new report
rpt. Run Fal se
'Add the report to the veiwer
Set arv. Report Source = rpt
Exit Sub

err Hndl :
MsgBox "Error Previewing the Report: " & Err.Nunber & " " & Err.Description
End Sub

Private Sub prepDesigner ()
On Error GoTo err Hndl

If Not arv.ReportSource |Is Nothing Then
arv. Report Sour ce. Cancel
Set arv. Report Source = Not hing
End | f

Exit Sub

err Hndl :

MsgBox "Error in Design Preview " & Err.Nunber & " " & Err.Description
End Sub

Note: SaveToObject must be used to save the changes made in the run-time designer to an ActiveReport
report object. You should always use that object to run and preview the report, do NOT use the
designer® s Report property to run and preview the report.

Save and run the project.

While the project is running, continue on to the next sample for a demonstration on using the designer at
run time.

Working with the Designer at Run-time

Working with the Designer at Run time

This sample demonstrates the fundamentals of using the designer at run time. The simple report created in
this sample will be used to demonstrate more advanced features later on in the manual. At runtime the
designer functions similarly to the ActiveX designer but does not allow access to the report events or code.

1.
2.

Start by running the sample project created above.

Place an ADO data control in the designere s detail section.

10.

11.

12.

13.

14.
15.

AR2Pro | 13

Connect to Nwind.mdb (see chapter 3 in the standard edition usere s guide).

Note: The samples in this manual use the NorthWind database included with Microsoft Visual Basic.
Set the DataControl® s source property to the following SQL statement:

SELECT * FROM customers order by country

Right-click on the designer and select insert to add a new GroupHeader/Footer.

Click on the new section GroupHeaderl to select it.

Modify the sectione s properties as follows:

Name ghOrderGroup
DataField Country
Height 750

Click on the new section GroupFooterl to select it.

Modify the sectione s properties as follows:
Name gfOrderGroup
Height 270

Add a Field control to the ghOrderGroup section and set its properties as follows:

Name txtGroupCountry

DataField Country

Height 360

Left 0

Top 0

Width 4230

Font .Size 12

Font .Bold True

Place 4 labels in the ghOrderGroup section and set their properties as follows:

Name IbICustomer IbICity IbiICountry IblPostalCode
Caption Customer City Country PostalCode
Height 270 270 270 270

Left 0 2970 5490 7380

Top 450 450 450 450
Width 2880 2430 1800 1800

Click and drag the following fields from the fields list into the detail section: CompanyName, City,
Country and PostalCode.

Set the field® s properties as follows:

Name txtCustomer txtCity txtCountry txtPostalCode
DataField CompanyName City Country PostalCode
Height 270 270 270 270

Left 0 2970 5490 7380

Top 0 0 0 0

Width 2880 2430 1800 1800
Alignment O-Left O-Left O-Left 1-Right

Set the detail sections height to 285.
The designer should look like this:

AR2Pro | 14

|EE] - 2R ibE || W alm|E-26E
- e s U= == P o
—| [l . ill:l---.---1---| 7 I C 3 I 4
5 =-[H MainReport J Pan
. [#-= PageHeader
i #-= ghOrderGroup
== Detail ﬂ =
Lo DataContre| - | Fieldd
4 Lo titCompan| - :
5 ‘ xtCity - Customer City Coun
@ ttCountry | = |5
oo ttPostallel I CompanyMame City Coun
FH-= gf0rderGroup j = o=y
[+-= PageFooter -
= i
s
=
CuztormerlD
i ComparnyM ame
i ContactM ame
|| ContactTitle
T || Address
City
:,%,: Region
IQ PaostalCode
oA | | County
de= ||Phone
EDd Fa:’:
o
XML

16. Click on the Report Preview tab to run and show the report.

AR2Pro | 15

B i Ti Dlesl Bl T hu...-uu P
E|é|..l|®|ﬂ|DH§|@\@\|WD I er.|1=’5 |dBackqlew
Yy R

Argentina
Customer City Country
Rancho grande Buenos Aires Argentina
COcéano Atlantico Ltda. Buenos Aires Argentina
Cactus Comidas para llevar Buenos Aires Argentina
Austria
Custormer City Country
Piccalo und mehr Salzburg Austria
Etnst Handel Graz Austria
Belgium

-1 Customer City Country

: hlaizon Dewey Bruxelles Belgium
suprémes délices Charlerai Belgiurm

I Brazil I

17. Switch back to the Runtime Designer tab and follow the next sample to see how the designere s layout
can be saved.

Saving and Loading Report Layouts

Saving and Loading Report Layouts

Reports can be saved and loaded into the designer by a variety of different methods. The easiest method is
to use the File menu on the designer to Save or Open RPX files (ActiveReporte s standard XML-formatted
report files).

Open/Save From File Menu

To save the report created in the previous sample:

1. Select the File menu.

2. Select the Save menu option.

AR2Pro | 16

3. Select the projecte s directory, set the File name to sample report.rpx and select save.
Save Heport _|_|
I = Simple Design and Preview J 4=] =%

sarnple report.ips

R
FRepart #ML [*.rps] J —l

Stop the project and restart is so the designer will return to the default setting. To load the previously
created report back into the designer:

1. Select the File menu.
2. Select the Open menu option.

3. Select the sample report.rpx file from the project® s directory and select Open.

Fle name: Isample repork.rpx . |
ril=z of by "IHepDrtKML[*.rpH] J ‘ | .

.

When the RPX file is loaded, the designer will display the previously created report.

Open/Save Through Code
A designere s layout can be saved and loaded through code by using the following methods:
Saving:

To save a designer layout in code use the designer® s SaveToObject method to save the layout to a report
object. Once the layout is saved to the report object, the report object® s SavelLayout method can be used
to save the layout to an RPX file, or byte array. Add the following code to the sample project to save the
designer layout whenever the Report Preview tab is selected.

Private Sub prepPreview)
On Error GoTo err Hndl
'"Wites the designer's |ayout

AR2Pro | 17

'"to the report so it can be previ ewed.

ard. SaveToCbj ect rpt

'Saves the report object to the specified style
rpt. SaveLayout App.Path & "\sanple report.rpx", ddSOFile
'Resets report

rpt. Restart

"Run the new report

rpt. Run Fal se

'Add the report to the veiwer

Set arv. Report Source = rpt

Exit Sub

err Hndl :
MsgBox "Error Previewing the Report: " & Err.Nunber & " " & Err.Description
End Sub

Save these changes.
Loading:

To load a designer layout in code use the report object® s Load method to load a specified RPX file and the
designere s LoadFromObject to read the layout into the designer. Add the following code to the project to
load the report designer when the project starts, and whenever the Runtime Designer tab is selected.

Private Sub Form Load()
'Set active Tab to the designer
SSTabl. Tab = 0
Set rpt = New ActiveReport
"Activate all the tool bars
ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBStandard

ard. Tool barsAccessi bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExplorer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBStandard
'Load the saved RPX file into a report object
rpt.LoadLayout App.Path & "\sanple report.rpx"
'Load the report object into the designer
ard. LoadFr onObj ect rpt
End Sub

Private Sub prepDesigner ()
On Error GoTo errHndl

If Not arv.ReportSource |Is Nothing Then
arv. Report Sour ce. Cancel
Set arv. Report Source = Not hing
End | f

'Load the saved RPX file into a report object
rpt.LoadLayout App.Path & "\sanple report.rpx"
'Load the report object into the designer

ard. LoadFr onObj ect rpt

Exit Sub

err Hndl :

MsgBox "Error in Design Preview " & Err.Nunber & " " & Err.Description
End Sub

Save these changes.
Loading DSR (ActiveX Designer) Files

The run-time designer can also load ActiveReporte s ActiveX Designers included within the project. To
demonstrate this capability:

1. Add an ActiveReport ActiveX Designer to the project and set its properties as follows.
Name rptSample

2. From the designere s File menu, open the previously saved sample report.rpx file. When the RPX file is

AR2Pro | 18

opened the ActiveX designer will have the same report that was developed with the runtime designer.

3. Modify frmMaine s Form_Load event to load rptSample instead by adding the following code:

Private Sub Form Load()
'Set active Tab to the designer
SSTabl. Tab = 0
Set rpt = New ActiveReport
"Activate all the tool bars
ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBSt andar (

ard. Tool barsAccessi bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExplorer + _
ddTBFi el ds + ddTBFormat + ddTBMenu + ddTBPropertyTool box + ddTBSt andar (

'Load the ActiveX designer into the run-tine designer
ard. LoadFr onObj ect rpt Sanpl e

End Sub

Do not save these changes.

Using the Designer Events

Using the Designer Events

The runtime designer uses four main events to control the actions performed by the end user. These events
are LayoutChanged, SelChange, StatusChange and ValidateChange.

LayoutChanged

LayoutChanged fires when the designere s layout is changed. The event can be used to monitor changes
made to the report layout and update any dependent data such as SQL queries or custom user interfaces.
The following list gives a description for the different layout changes.

Setting Description
ddLCControlMove 0 = A control® s position has changed.
ddLCControlSize 1= A controle s size has changed.
ddLCControlDelete 2 = A control has been deleted.
ddLCSectionSize 3 » A sectione s size has changed.
ddLCSectionDelete 4 = A section is deleted.
ddLCSectionMove 5« A section is moved.
ddLCReportSize 6 » The reporte s size is changed.
ddLCControlAdd 7 = A new control has been added to the report.
SelChange

SelChange fires when an item in the designer is selected. The event can be used to identify the selected item
by accessing the designere s SelectedObjects property.

StatusChange

StatusChange fires for each change in the status of the designer action. Designer actions represent the
commands typically invoked from Ul elements such as toolbars or menus. The following list gives a
description for all of the actions:

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.

ddActionECut 4 - Edit: Cut.

ddActionEPaste
ddActionECopy
ddActionEUndo
ddActionEDelete
ddActionEDeleteSection
ddActionElnsertReportHF
ddActionElnsertPageHF
ddActionElnsertGroupHF
ddActionEReorderGroups
ddActionElnsertField
ddActionViewExplorer
ddActionViewFieldsList
ddActionViewPropertyList
ddActionViewGrid
ddActionViewSnapToGrid
ddActionViewFullScreen
ddActionViewCodeEditor
ddActionFoAlignLefts
ddActionFoAlignRights
ddActionFoAlignCenters
ddActionFoAlignTops
ddActionFoAlignMiddles
ddActionFoAlignBottoms
ddActionFoAlignToGrid
ddActionFoAlignCenterInSec
ddActionFoSizeSameWidth
ddActionFoSizeSameHeight
ddActionFoSizeSameBoth
ddActionFoVSpaceEqual
ddActionFoVSpacelncrease
ddActionFoVSpaceDecrease
ddActionFoHSpaceEqual
ddActionFoHSpacelncrease
ddActionFoHSpaceDecrease
ddActionFoOrderBringToFront
ddActionFoOrderSendToBack
ddActionFoLockControls
ddActionFoStyle
ddActionFoFontName
ddActionFoFontSize
ddActionFoFontBold
ddActionFoFontltalic
ddActionFoTextAlignLeft
ddActionFoTextAlignCenter
ddActionFoTextAlignRight
ddActionFoForeColor
ddActionFoBackColor
ddActionFoLineStyle
ddActionFoLineColor
ddActionFoBorder
ddActionFoBullets
ddActionFolndent
ddActionFoOutdent
ddActionFoUnderline

5 - Edit: Paste.

6 - Edit: Copy.

7 - Edit: Undo.

8 - Edit: Delete.

9 - Edit: Delete Section.

10 - Edit: Insert Report Header/Footer.
11 - Edit: Insert Page Header/Footer.
12 - Edit: Insert Group Header/Footer.
13 - Edit: Reorder Groups.

14 - Edit: Insert Field.

15 - View: Report Explorer.

16 - View: Fields List.

17 - View: Property Listbox.

18 - View: Grid.

19 - View: Snap to grid.

20 - View: Full screen.

21 - View: Script Code Editor.

22 - Format: Align Control Lefts.

23 - Format: Align Control Rights.

24 - Format: Align Control Centers.

25 - Format: Align Control Tops.

26 - Format: Align Control Middles.

27 - Format: Align Control Bottoms.

28 - Format: Align to Controls Grid.

29 - Format: Align: Center Control in Section.

30 - Format: Size controls to the same width.
31 - Format: Size controls to the same height.
32 - Format: Size controls to the same width and height.
33 - Format: Space controls even vertically.
34 - Format: Increase vertical spacing.

35 - Format: Decrease vertical spacing.

36 - Format: Space controls even horizontally.
37 - Format: Increase horizontal spacing.

38 - Format: Decrease horizontal spacing.

39 - Format: Bring control to the foreground.
40 - Format: Send control to the background.

41 - Format: Lock controls size and position.
42 - Format: Style.

43 - Format: Font name.

44 - Format: Font size.

45 - Format: bold.

46 - Format: ltalic.

47 - Format: Align text left.
48 - Format: Align text center.
49 - Format: Align text Right.

50 - Format:
51 - Format:
52 - Format:

Set foreground color.
Set background color.
Set line style.

53 - Format: Set line color.

54 - Format: Set border styles.
55 - Format: Set bullet style.
56 - Format: Indent text.

57 - Format:

Outdent text.

58 - Underline.

AR2Pro | 19

Note: The ExecuteAction method can be used to execute most of the actions above. The items that cannot

AR2Pro | 20

be executed with this method are items requiring parameters, such as color, font, size and style.
ValidateChange

ValidateChange fires before an item is moved, sized or deleted. This event can be used to control the end
usere s actions. For instance, this event can be used to prevent the user from removing or moving an
important control.

These events can be demonstrated by adding the following to the sample project.

1. Select the following components from Visual Basic® s components list:

Microsoft Windows Common Controls 6.0

Microsoft Common Dialog Control 6.0

Add a status bar to the bottom of frmMain and change its name to sb.

Add a second panel to the status bar and set its AutoSize property to 1-sbrSpring.

Add a common dialog control to frmMain and set its name to cmDLG.

A S

Add the following main menu item to Visual Basic® s menu editor:
Caption &File
Name mFile

6. Add the following submenu item to the File menu:
Caption &Exit
Name mEXxit

7. Add the following second main menu item to the menu editor:
Caption &Edit
Name mEdit

8. Add the following submenu item to the Edit menu:
Caption &Font
Name mFont

9. Modify the projects code to handle the added menu items:

Private Sub nmExit_Click()
Unl oad Me
End Sub

Private Sub nFont _Click()
' Show t he font dial og box
cnDLG. Fl ags = cdl CFBot h
cnDLG. ShowFont

"Updated the selected iten(s) with the new font specs

For x = 0 To ard. Sel ect edObj ects. Count - 1
ard. Sel ect edObj ect s(x). Font. Name = cnDLG. Font Nanme
ard. Sel ect edObj ect s(x). Font. Size = cnDLG. Font Si ze
ard. Sel ect edObj ect s(x). Font. Underline = cnDLG Font Underl i ne
ard. Sel ect edObj ects(x).Font.ltalic = cnDLG Fontltalic

Next X

End Sub

10. Modify the prepPreview and prepDeisgner subs to handle the menu items:

Private Sub prepPreview)
On Error GoTo err Hndl
'"Wites the designer's |ayout
'"to the report so it can be previ ened.
ard. SaveToCObj ect rpt
'Saves the report object to the specified style
rpt.Save App.Path & "\sanple report.rpx", ddSOFile
'Resets report

AR2Pro | 21

rpt. Restart

"Run the new report

rpt. Run Fal se

'"Add the report to the veiwer
Set arv. Report Source = rpt

'Di sabl e nenu itens in previ ew node

nFi |l e. Enabl ed = Fal se

nEdi t . Enabl ed = Fal se

Exit Sub

err Hndl :

MsgBox "Error Previewing the Report: " & Err.Nunber & " " & Err.Description

End Sub

Private Sub prepDesi gner ()
On Error GoTo err Hndl

If Not arv.ReportSource |Is Nothing Then
arv. Report Sour ce. Cancel
Set arv. Report Source = Not hing
End | f

'Load the saved RPX file into a report object
rpt.Load App.Path & "\sanple report.rpx"
'Load the report object into the designer
ard. LoadFr onObj ect rpt

'Enabl e the nenu itenms in design node

nFil e. Enabl ed = True

nEdi t. Enabl ed = True

Exit Sub

err Hndl :

MsgBox "Error in Design Preview " & Err.Nunber & " " & Err.Description

End Sub

11. Add the following code to the project to handle each of the above events:

Private Sub ard_Layout Changed(ByVal changedObject As Object, ByVal changeType As DDActi vel
Dimcnv As DDActi veReports2. Canvas
Dimw As Long, h As Long
Dim sLCaption As String

' The follow ng code checks to see if a | able has been added
"If a label is added, it will pronpt the user for a caption
"And set the lable's width and height to fit the caption

'Check if a | abel as been added

If TypeOF' changedObj ect |s DDActi veReports2. Label And changeType = ddLCContr ol Ad
'"CGet a caption for the |abel
sLCaption = | nput Box("Enter a Caption for the Label", "Enter Caption")

"I'f no caption is given, use the added object's nane
If sLCaption = "" Then sLCaption = changedCbj ect. Nane

'Set the added | abel's caption to the given caption
changedObj ect . Caption = sLCaption

"Use the canvas object to get a width and height for the caption
Set cnv = New DDActi veReports2. Canvas

"makes sure the canvas is nmeasures with the sanme font size
cnv. Font = changedObj ect . Font
cnv. Measur eText sLCaption, w, h

AR2Pro | 22

' Change the added controls w dth and hei ght
changedObj ect. Wdth = w
changedObj ect . Hei ght = h

"unl oad the canvas
Set cnv = Not hing
End If

End Sub

Private Sub ard_Sel Change()
Dim sControl As String
'Fol | owi ng code displays the selected | abel or field s nane,
"Top, left, height and width
If ard. Sel ect edObj ects. Count = 1 Then
If TypeOF ard. Sel ectedObjects(X) |s DDActiveReports2.Field Or _
TypeOf ard. Sel ect edObj ects(X) |s DDActiveReports2. Label Then

sControl = ard. Sel ect edObj ect s(X). Nane
sControl = sControl & " Top:" & ard. Sel ect edObj ects(X). Top
sControl = sControl & " Left:" & ard. Sel ectedObj ects(X).Left
sControl = sControl & " " & ard. Sel ectedObj ects(X).Height & _
twips X"
sControl = sControl & ard.Sel ectedObjects(X).Wdth & " tw ps"
End | f
El se
sControl = ""
End | f

sb. Panel s(2). Text = sControl
End Sub

Private Sub ard_StatusChange(ByVal action As DDActiveReportsDesi gnerCtl. DesignerActionType
Sel ect Case action
Case ddActi onFoFont Nanme
' Enabl e/ Di sabl e the font nmenu option
nmFont . Enabl ed = ard. QuerySt at us(ddAct i onFoFont Nane)
End Sel ect
End Sub

Private Sub ard_Vali dat eChange(ByVal changedObject As Object, ByVal changeType As DDActi ve
'The follow ng code prevents the end user fromdeleting the
'Data control
I f TypeNanme(changedCbj ect) = "DataControl" Then
I f changeType = ddLCControl Del ete Then
MsgBox "You are not allowed to delete the report's data contr
vbCritical, "Cannot Renpve Control"
Cancel = True
End | f
End | f
End Sub

12. Save and run the project.

Using Scripting

Using Scripting
When working with RPX files, all necessary report code must be included with the RPX file in the form of a

script because any Visual Basic code used to create the report in not saved into the RPX file. Also, the end
user will need to use an ActiveScripting language to make any type of programmatic changes to a report.

Note: For a more detailed explanation of scripting examine chapter 14 in the standard edition user® s guide.

ActiveReports provides two different methods to help make scripting easier and more versatile with Visual
Basic. The report object®s s AddCode method allows code to be added, in the form of a string, at runtime and
the AddNamedltem method adds functions and subs contained inside the Visual Basic code to the scripting
name space. Continuing with the designer sample we will use both methods to demonstrate how each item is
setup. Because RPX files are not secure files, it is highly suggested that all sensitive information be left out of

AR2Pro | 23

the RPX file. Since the project is currently using a data control, with the connection string specified, the
connection sting will be visible in the RPX file. It is highly recommended to use AddNamedltem to allow the
Visual Basic project to retrieve the Recordset and pass this to the DataControl. The following demonstrates
how to convert the sample project to take advantage of the AddNamedltem method.

Using AddNamedltem

1.

Add a class module to the project and set its name to clsFunctions.
Note: When working with AddNameltem, the subs and functions must be wrapped within a class.
In Visual Basice s references list, select the newest Microsoft ActiveX Data Objects Library.

Add the following function to clsFunctions:

Public Function getRSet() As ADODB. Recordset

Dimrs As ADODB. Recor dset
Dim cn As ADODB. Connecti on
DimcnnString As String

On Error GoTo err Hndl

New ADODB. Connecti on
New ADODB. Recor dset

Set cn
Set rs

' Connect to DB and get recordset

cnnString = "Provi der=M crosoft. Jet. OLEDB. 4. 0; Dat a Source=C:\ Program Fil es\M cro
cn. Open cnnString

rs.Open "Select * fromcustonmers order by country", cn

Set getRSet = rs

Set rs
Set cn

Not hi ng
Not hi ng

Exit Function

err Hndl :

MsgBox "Unable to get recordset: " & Err.Nunber & ": " & Err.Description
Set rs = Not hing

Set cn = Not hi ng

End Function

Make the following modifications to the prepViewer sub to make the report object and script aware of the
added class:

Private Sub prepPreview)

On Error GoTo err Hndl

'"Wites the designer's |ayout

'"to the report so it can be previ ewed.

ard. SaveToCbj ect rpt

'Saves the report object to the specified style
rpt.Save App.Path & "\sanple report.rpx", ddSOFile
'Resets report

"Activate the Script debugger and refresh the script
rpt. Scri pt Debugger Enabl ed = True

rpt. Reset Scripts

' Use AddNanedltemto add the function to the scripting name space
rpt. AddNanedl t em "vbCode", New cl sFuncti ons

rpt. Restart

"Run the new report

rpt. Run Fal se

'Add the report to the veiwer
Set arv. Report Source = rpt

'Di sabl e nenu itens in previ ew node
nFi | e. Enabl ed Fal se
nEdi t . Enabl ed Fal se

AR2Pro | 24

Exit Sub

err Hndl :
MsgBox "Error Previewing the Report: " & Err.Nunber & " " & Err.Description
End Sub

5. Save and run the project.

6. Select DataControll on the designer and clear out the ConnectionString and Source string.

7. Select the Script icon 53 and add the following code to the ActiveReport Document OnDatalnitialize sub:

Sub OnDatalnitialize
set rpt.datacontrol 1.recordset = vbcode. getrset
End Sub

8. Select the Report Preview tab to use the new function.
Using AddCode

1. Add the following code to clsFunctions:

Public Function IIf(Expression, TruePart, FalsePart)
I1f = VBA. || f(Expression, TruePart, FalsePart)
End Function

Publi ¢ Function Format (Expression, sFormat)

Format = VBA. For mat (Expr essi on, sFormat)
End Function

2. Add the following code to frmMain:

Private Function Hel per Code() As String
Di m sCode As String

sCode =

sCode = sCode & _
"Public Function IIf(expr, exprTrue, exprFalse)" & vbCrLf & _
"If expr Then IIf = exprTrue Else IIf = exprFalse" & vbCrLf & _
"End Function"”

sCode = sCode & _

"Public Function Format(expr, fnt)" & vbCrLf & _
"Format = vbCode. Format (expr, fnt)" & vbCrLf & _
"End Function"”

End Function

3. Add the following code to prepPreview to use the AddCode method:

Private Sub prepPreview)
On Error GoTo err Hndl
'"Wites the designer's |ayout
'"to the report so it can be previ ewed.
ard. SaveToCbj ect rpt
'Saves the report object to the specified style
rpt.Save App.Path & "\sanple report.rpx", ddSOFile
'Resets report

"Activate the Script debugger and refresh the script
rpt. Scri pt Debugger Enabl ed = True
rpt. Reset Scripts

"Add I'If hel per code
rpt . AddCode Hel per Code()

"Use AddNanmedltemto add the function to the scripting name space

AR2Pro | 25

rpt. AddNanedl t em "vbCode", New cl sFuncti ons

rpt. Restart

"Run the new report

rpt. Run Fal se

'Add the report to the veiwer
Set arv. Report Source = rpt

'Di sabl e nenu itens in previ ew node
nFil e. Enabl ed = Fal se
nEdi t . Enabl ed = Fal se

Exit Sub

err Hndl :

MsgBox "Error Previewing the Report: " & Err.Nunber & " " & Err.Description
End Sub

4. Save and run the project.

Note: The samples contained in this section are designed to demonstrate the fundamentals for using the
end-user report designer. More advanced samples can be found in the sample directory and in Data
Dynamics® online knowledgebase at http://www.datadynamics.com/kb.

Custom Toolbars and Menus

Custom Toolbars and Menus

The runtime designer toolbars and menus cannot be customized during development. You can control the
visibility and accessibility of individual toolbars using ToolbarsVisible and ToolbarsAccessible properties. You
cannot remove any of the tools from the toolbars.

If you need to present your end users with a different user interface elements you should disable and hide all
the toolbars by setting ToolbarsVisible and ToolbarsAccessible to 0 and create your own toolbars and menus.

StatusChange event and ExecuteAction and QueryStatus methods provide complete control over the current
state of available Ul options. In addition, you can customize the alerts and error messages by handling the
Alert event.

In addition, you can create your own custom or localized object context menus in the ContextMenuOpen
event.

The "Diamond Reports" sample included in your samples directory provides a comprehensive example for
creating custom toolbars and menus.

Included Sample Projects

Included Sample Projects

The ActiveReports Pro installation includes a few specialized sample projects to demonstrate the different
techniques and capabilities available with the professional edition of ActiveReports.

The code behind the sample projects demonstrates many techniques available with the professional edition.
Use these samples along with the following tutorial to help you understand the use of the various
ActiveReports Professional components.

Following is a listing of these sample projects and the features they demonstrate:

Name Description
1 Diamond An advanced project demonstrating the full possibilities of the run-time designer.
Reports Includes custom toolbars and menus that implement the functionality of the built-in
counterparts.
2 Property Demonstrates using the property list box.
List
3 Simple Demonstrates using the run-time designer, property list box and preview form.

Designer

Deployment and Distribution

Deployment and Distribution

You need to include the following files on all clients when distributing ActiveReports Pro.

File Name
Arpro2.DLL
ARVIEW2.0cx
ARdespro2.dll
AB2DLL.dII
PDFExpt.DLL
RTFExpt.DLL
ExclExpt.DLL
TextExpt.DLL
HTMLExpt.DLL
TiffExpt.dll
WebCache.dll

Description
The Reporting Engine.
Only if you are using our ActiveX Viewer.
Only if you are using the end-user report designer.
If you are using the run-time designer (not supported on the web).
PDF Export Filter (when using PDF exporting).
RTF Export Filter (when using RTF exporting).
Excel Export Filter (when using Excel exporting).
Text Export Filter (when using Text exporting).
HTML Export Filter (when using HTML exporting).
Tiff Export Filter (when using Tiff exporting).
Only if you are using the WebCache service.

Web Server Distribution

AR2Pro | 26

To serve reports to clients in a web environment, your web server should have arview2.cab if the project
uses the ActiveReports Viewer Control and arpro2.cab if the project uses the end user designer control. You
should also copy and register any export DLLs as needed.

WebCache Service and ISAPI DLL

WebCache Service and ISAPI DLL

Introduction
Installation

Deployment

Using the WebCache Service

Introduction

Introduction

The WebCache service and ISAPI DLL are used to manage report output on web servers running Microsoft®
Internet Information Servers. The caching service is a COM component that runs as service on the web

server and caches the report's output. The ISAPI DLL receives requests for cache items, retrieves the items
from the caching service and delivers them to the client browsers.

Installation

Installation

The setup program will automatically install WebCache.dll and WebCacheService.exe to your machine. The
service defaults will be set to use the system account and automatic startup.

Deployment

AR2Pro | 27

Deployment

To deploy the WebCacheService, you can add the WebCacheService.exe file to your setup project as a service
or manually register the service using:

WebCacheService.exe -RegServer = Service
To uninstall, stop the service using the Control Panel / Administrative Tools / Services tool and then use
WebCacheService.exe -UnregServer

Note: If you are using Wise InstallMaster, done t use the service installation feature, instead add the
following commands to your install script:

Execute Program %0OCXPATH%\WebCacheService.exe -RegisterServer -Service
Add Execute path: %0OCXPATH%\WebCacheService.exe * UnregServer to INSTALL.LOG

To configure the number of threads that the WebCacheService creates on startup set the Start
Parameters /Threads=NumberOfThreads on the general property page of the service (Control Panel /
Services).

Using the WebCache Service

Using the WebCache Service
The WebCache service can be utilized using either of the following methods:

1. CacheContent method allows you to cache any type of content including report output (RDF files) and
export filters byte array output. The CacheContent method specifies the content type and the ISAPI filter
would serve the cached items with the content and header specified in this method.

2. Excel and PDF Export Filters expose an ExportWebCache method that allows a direct export into the
WebCache service objects and returns the proper cache item ids to redirect the client browser.

Developers Reference

Developers Reference

ActiveReports Run-time Designer

WebCache Service Objects

Property List Objects

ActiveReports Run-time Designer

ActiveReports Run-time Designer

ARDesigner Control
Selection Object

ARDesigner

ARDesigner

Name
GridSnap
GridVisible
GridX
GridY
IsDirty

Locked

Report
RulerUnits
SelectedObjects

Type Description

AR2Pro | 28

Property Determines whether the controls should be snapped to the grid points.

Property Determines whether the drawing grid should be visible.
Property Determines how coarse the designer grid should be.
Property Determines how coarse the designer grid should be.

Property Returns whether report has been modified since last layout was loaded

or initialized.
Property Specifies whether the controls are locked in place.
Property Returns a reference to the designer's report object.
Property Sets or returns ruler units (Inches, Centimeters).
Property Returns collection of selected objects.

ToolbarsAccessible Property Bit flags for each toolbar to determine whether a toolbars is accessible

ToolbarsVisible
Toolboxltem
ExecuteAction

LoadFromObject

NewLayout

QueryStatus

SaveToObject

Alert

ContextMenuOpen
Error
LayoutChanged
SelChange
StatusChange
ValidateChange

by the end user.

Property Bit flags for each toolbar to determine whether a toolbar is visible.

Property Sets or returns PROGID of active toolbox item.
Method Executes a specified designer command.

object.ExecuteAction(action As DesignerActionTypes)

Method Reads the layout from a report object into designer control.

object.LoadFromObject(Report As 1ActiveReport)

Method Discards the current report layout and creates a new blank layout.

object.NewLayout()

Method Queries the designer for the status of one or more commands.

object.QueryStatus(action As DesignerActionTypes)
Method Write the layout from the designer to a report object.

object.SaveToObject(Report As IActiveReport)

Event Fires when an alert requesting user intervention is about to be

displayed.
Event Fires before a context menu is opened.
Event Fires when an error occurs in the designer component.
Event Fires when the report layout is changed.
Event Fires when selection changes.

Event Fires for each change in the status of the designer actions.

Event Fires before an item is moved, sized or deleted.

AR2Pro | 29

Properties

ARDesigner Properties
GridSnap
GridVisible

GridX

GridY

IsDirty

Locked

Report

RulerUnits
SelectedObjects
ToolbarsAccessible
ToolbarsVisible

Toolboxltem

GridSnap

GridSnap

Determines whether the controls should be snapped to the grid points.

Syntax
object.GridSnap [= value]
The GridSnap property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Default - The controls are snapped to the grid points.
False The controls can be sized and positioned freely.
Data Type
Boolean
Remarks

Default value = True

GridVisible

GridVisible

Determines whether the drawing grid should be visible.

Syntax

AR2Pro | 30

object.GridVisible [= value]
The GridVisible property syntax has the following parts:

Part Description

object A valid ARDesigner object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Shows the grid in the designer.
False Hides the grid in the designer.
Data Type
Boolean
Remarks

Default value = True

GridX

GridX

Determines how coarse the designer grid should be.

Syntax
object.GridX [= value]
The GridX property syntax has the following parts:

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of horizontal grid points per ruler unit.

Data Type

Integer

Remarks

Default value = 16

GridY

GridY

Determines how coarse the designer grid should be.

Syntax
object.GridY [= value]
The GridY property syntax has the following parts

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of vertical grid points per ruler unit.

Data Type

Integer

Remarks

Default value = 16

IsDirty

IsDirty

Returns whether report has been modified since last layout was loaded or initialized.

Syntax

object.1sDirty [= value]

The IsDirty property syntax has the following parts:

Part Description
object A valid ARDesigner object
value A Boolean value.
Settings
The settings for value are:
Setting Description
True The report layout has been modified.

False

The report layout has not been modified.

Data Type

Boolean

Example

Private Sub Form QueryUnl oad(Cancel As Integer, UnloadMbde As I nteger)

End Sub

Locked

Locked

I f ARDesignerl.lsDirty Then
Ask if report should be saved
Dimi Save As | nteger
i Save = MsgBox("Save changes to the report?",
vbYesNoCancel , "Save")
Sel ect Case i Save
Case vbYes
' Save the Report
Fi | eSave
Cancel =0
Case vbNo
" Continue w thout saving
Cancel =0
Case vbCancel
' Cancel Unl oad
Cancel =1
End Sel ect
End | f

Specifies whether the controls are locked in place.

Syntax

AR2Pro | 31

AR2Pro | 32

object.Locked [= value]

The Locked property syntax has the following parts:

Part Description

object A valid ARDesigner object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True The controls cannot be moved or sized.
False The controls can be moved or sized.
Data Type
Boolean
Example

* If the controls are locked mark the menu item as checked
mnulLocked.Checked = ARDesignerl.Locked

Remarks

Default value = False

Report

Report

Returns a reference to the designer's report object.

Syntax
object.Report [= value]

The Report property syntax has the following parts:

Part Description
object A valid ARDesigner object
value An ActiveReport reference.
Data Type

|ActiveReport

Example

'Add a data control to the designer using the Report object
Dimctl As DataControl
W th ARDesigner. Report. Sections("Detail"). Controls

Set ctl = . Add("DDActi veReports2. DataControl")
ctl.Name = "dc"
ctl.Top = 0: ctl.Left =0
ctl.Tag = ""

End Wth

Remarks

This report object is used to gain access to the layout and controls properties. Do not use it to run the report
and preview it. Use a separate ActiveReport variable and save the layout to it using the SaveToObject
method.

RulerUnits

RulerUnits

Sets or returns ruler units (Inches, Centimeters).

Syntax
object.RulerUnits [= value]

The RulerUnits property syntax has the following parts:

Part Description
object A valid ARDesigner object
value A valid ddRulerUnits setting.
Settings
The settings for value are:

Setting Description

ddRulerus 0 - Inches.
ddRulerMetric 1 - Centimeters.

Data Type
ddRulerUnits

Remarks
Default value = 0 - US Setting.

SelectedObjects

SelectedObjects

Returns collection of selected objects.

Syntax
Set value = object.SelectedObjects

The SelectedObjects property syntax has the following parts:

Part Description
object A valid ARDesigner object
value A Selection object.
Data Type
Selection
Example

Private Sub ARDEsi gner1_Sel Change()
Dim | Sel As Long
Dim arrSel ()
"plist is a custom PropertylList control
plist.Cl ear

"When sel ection changes, add sel ected objects to the custom
"property list
I f ARDesi gnerl. Sel ect edObj ects. Count > 0 Then

ReDi m arr Sel (ARDesi gner 1. Sel ect edObj ects. Count - 1)

AR2Pro | 33

AR2Pro | 34

For 1Sel = 0 To ARDesi gnerl. Sel ect edObj ects. Count - 1
Set arrSel (1 Sel) = ARDesignerl. Sel ect edObj ects(! Sel)
Next
plist. Sel ect Obj ects arr Sel
End | f
End Sub

ToolbarsAccessible

ToolbarsAccessible

Bit flags for each toolbar to determine whether a toolbars is accessible by the end user. One additional flag
for the context menus or a property to enable or disable the context menus.

Syntax

object.ToolbarsAccessible [= value]

The ToolbarsAccessible property syntax has the following parts

Part Description
object A valid ARDesigner object
value A Toolbarldentifiers setting.
Settings
The settings for value are:

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.

Data Type

Toolbarldentifiers

Example

Private Sub Form Load()
'Di sabl e and hide the built-in tool bars
ARDesi gner 1. Tool bar sAccessible = 0
ARDesi gner 1. Tool barsVisible = 0

End Sub

Remarks

The customization option for the toolbars is available only when all toolbars are accessible. If any of the
toolbars is not accessible the built-in customization will be disabled.

ToolbarsVisible

ToolbarsVisible

Bit flags for each toolbar to determine whether a toolbar is visible. The end user can show/hide the toolbars
from the toolbar's context menu.

Syntax

object.ToolbarsVisible [= value]

AR2Pro | 35

The ToolbarsVisible property syntax has the following parts:

Part Description
object A valid ARDesigner object
value A Toolbarldentifiers setting.
Settings

The settings for value are:

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.

ddTBPropertyToolbox

128 - Property toolbox.

Data Type

Toolbarldentifiers

Example

Private Sub Form Load()
'Di sabl e and hide the built-in tool bars
ARDesi gner 1. Tool bar sAccessible = 0
ARDesi gner 1. Tool barsVisible = 0

End Sub

Toolboxltem

Toolboxltem

Sets or returns PROGID of active toolbox item. Set to empty to end control mode.

Syntax
object.ToolBoxltem [= value]

The Toolboxltem property syntax has the following parts:

Part Description
object A valid ARDesigner object
value A String value.
Data Type
String
Example

Private Sub tbTool box_ButtonC ick(ByVal Button As MsSConcttl Li b. Button)
Sel ect Case Button. key
Case "tbxSel ect": ARDesignerl. Tool Boxltem=""
Case "tbxLabel ": ARDesigner1. Tool Boxltem = "DDActi veReports2. Label "
Case "tbxField": ARDesignerl.Tool Boxltem = "DDActiveReports2. Fiel d"

Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
End Sel ect
End Sub

Remarks

AR2Pro | 36

"t bxCheckbox": ARDesi gner 1. Tool Boxltem = "DDActi veReports2. Checkbox"
"t bxl mage": ARDesi gner 1. Tool Boxltem = "DDActi veReports2. | mage"

"t bxLi ne": ARDesi gnerl. Tool Boxltem = "DDActi veReports2.Line"

"t bxShape": ARDesi gner 1. Tool Boxltem = "DDActi veReports2. Shape"

"tbxRi chedit": ARDesigner 1. Tool Boxltem = "DDActi veReports2. Ri chEdit"
"t bxFrame": ARDesi gner 1. Tool Boxltem = "DDActi veReports2. Frane"

"t bxSubreport": ARDesignerl. Tool Boxltem = "DDActi veReports2. Subreport
"t bxPageBreak": ARDesignerl. Tool Boxltem = "DDActi veReports2. PageBr eak
"t bxOLE": ARDesi gner 1. Tool Boxltem = "DDActi veReports2. OLE"

"t bxBar code": ARDesi gner1l. Tool Boxltem = "DDActi veReports2. Bar code"

This property is used to implement a custom toolbox toolbar.

Methods

ARDesigner Properties

ExecuteAction
GetSectionFromPoint
LoadFromObject
NewLayout
QueryStatus
SaveToObject

ExecuteAction

ExecuteAction

Executes a specified designer command. You can use this method when implementing a custom toolbar or
menu, this method will perform the report actions in response to the toolbar or menu items.

Syntax

object.ExecuteAction(action As DesignerActionTypes)

The ExecuteAction method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes - A valid action setting.

Settings

The settings for action are:

Setting
ddActionFOpen
ddActionFSave
ddActionFPageSetup
ddActionECut
ddActionEPaste
ddActionECopy
ddActionEUndo
ddActionEDelete
ddActionEDeleteSection
ddActionElnsertReportHF

Description
1 - File: Open.
2 - File: Save.
3 - File: Page Setup.

4 - Edit: Cut.
5 - Edit: Paste.
6 - Edit: Copy.

7 - Edit: Undo.

8 - Edit: Delete.

9 - Edit: Delete Section.

10 - Edit: Insert Report Header/Footer.

ddActionElnsertPageHF
ddActionElnsertGroupHF
ddActionEReorderGroups
ddActionElnsertField
ddActionViewExplorer
ddActionViewFieldsList
ddActionViewPropertyList
ddActionViewGrid
ddActionViewSnapToGrid
ddActionViewFullScreen
ddActionViewCodeEditor
ddActionFoAlignLefts
ddActionFoAlignRights
ddActionFoAlignCenters
ddActionFoAlignTops
ddActionFoAlignMiddles
ddActionFoAlignBottoms
ddActionFoAlignToGrid
ddActionFoAlignCenterInSec
ddActionFoSizeSameWidth
ddActionFoSizeSameHeight
ddActionFoSizeSameBoth
ddActionFoVSpaceEqual
ddActionFoVSpacelncrease
ddActionFoVSpaceDecrease
ddActionFoHSpaceEqual
ddActionFoHSpacelncrease
ddActionFoHSpaceDecrease
ddActionFoOrderBringToFront
ddActionFoOrderSendToBack
ddActionFoLockControls
ddActionFoFontBold
ddActionFoFontltalic
ddActionFoTextAlignLeft
ddActionFoTextAlignCenter
ddActionFoTextAlignRight
ddActionFoBorder
ddActionFoBullets
ddActionFolndent
ddActionFoOutdent
ddActionFoUnderline

Example

'Edit > Cut menu item
Private Sub miECut_Click()

11 - Edit:

12 - Edit:
13 - Edit:
14 - Edit:
15 - View:
16 - View:
17 - View:
18 - View:
19 - View:
20 - View:
21 - View:

AR2Pro | 37

Insert Page Header/Footer.
Insert Group Header/Footer.
Reorder Groups.

Insert Field.

Report Explorer.

Fields List.

Property Listbox.

Grid.

Snap to grid.

Full screen.

Script Code Editor.

22 - Format: Align Control Lefts.

23 - Format: Align Control Rights.

24 - Format: Align Control Centers.

25 - Format: Align Control Tops.

26 - Format: Align Control Middles.

27 - Format: Align Control Bottoms.

28 - Format: Align to Controls Grid.

29 - Format: Align : Center Control in Section.
30 - Format: Size controls to the same width.
31 - Format: Size controls to the same height.
32 - Format: Size controls to the same width and height.
33 - Format: Space controls even vertically.
34 - Format: Increase vertical spacing.

35 - Format: Decrease vertical spacing.

36 - Format: Space controls even horizontally.
37 - Format: Increase horizontal spacing.

38 - Format: Decrease horizontal spacing.

39 - Format: Bring control to the foreground.
40 - Format: Send control to the background.
41 - Format: Lock controls size and position.
45 - Format: bold.

46 - Format: Italic.

47 - Format: Align text left.

48 - Format: Align text center.

49 - Format: Align text Right.

54 - Format: Set border styles.

55 - Format: Set bullet style.

56 - Format: Indent text.

57 - Format: Outdent text.

58 - Format: Underline.

ARDesignerl.ExecuteAction ddActionECut

End Sub

Remarks

Font and color actions are not supported in the ExecuteAction method. In order to set font and color
properties you should directly access the selected object and set those properties.

GetSectionFromPoint

GetSectionFromPoint

AR2Pro | 38

Returns the section name at a specified point and converts the point coordinates to section relative
coordinates. Returns empty when the specified point is not within a section area.

Syntax
[sectionName = Jobject.GetSectionFromPoint(x As Single, y As Single)
The GetSectionFromPoint method syntax has the following parts:

Part Description

object A valid ARDesigner object.
X, Yy Single - Specifies the point coordinates of which to retrieve the section name. The values
are converted to section relative coordinates on return from the method.

sectionName String - Returns the section name that is at the specified point coordinates.

Returns

String

Example

Private deltax As Single, deltay As Single

' This code inplements a | abel Drag Drop on the designer control.

" It adds a new control at the dropped |ocation.

Private Sub ard_DragDrop(Source As Control, X As Single, Y As Single)
Dim sSec As String
Di m secTarget As Obj ect
Dimctl As Object

X = X - deltax
Y =Y - deltay
sSec = ard. Get Secti onFronPoi nt (X, Y)
If sSec <> "" Then
Set secTarget = ard. Report. Secti ons(sSec)
Set ctl = secTarget.Controls. Add("DDActi veReports2. Label ")

ctl.Left = X
ctl.Top = Y

ctl.Wdth | bl Drag. Wdth
ctl.Height = | bl Drag. Hei ght
ctl.BackStyle = 1
ctl.BackCol or = &HCOCOFF

If (ctl.Left + ctl.Wdth) > ard. Report.PrintWdth Then
ard. Report.PrintWdth = ctl.Left + ctl.Wdth

End | f

If (ctl.Top + ctl.Height) > secTarget. Height Then
secTarget. Hei ght = ctl.Top + ctl. Hei ght

End | f

End | f
End Sub

Private Sub ard_DragOver (Source As Control, X As Single, Y As Single, State As |nteger)
Dim sSec As String

X = X - deltax

Y =Y - deltay

sSec = ard. Get Secti onFronPoi nt (X, Y)

|stState. AdditemsSec & " : " & Str$(X) & "," & Str$(Yy)
End Sub
Remarks

This method is used when adding controls into specific sections using drag and drop events.

LoadFromObject

LoadFromObject

Reads the layout from a report object into designer control.

Syntax
object.LoadFromObject(Report As IActiveReport)

The LoadFromObject method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport
Example

'Load a report layout file into an activereport instance

"then load it into the designer control.

"Alternatively, you can use the Load nethod of the deisgner's Report
Dimrpt As ActiveReport

Set rpt = New ActiveReport

rpt.Load App.Path & "\test.rpx"

ARDesi gner 1. LoadFr onObj ect (r pt)

NewlLayout

NewlLayout

Discards the current report layout and creates a new blank layout.

Syntax
object.NewLayout()

The NewlLayout method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
Example

"File > New, Menu Item
Private Sub m FNew Cli ck()

ARDesi gner 1. NewLayout
End Sub

QueryStatus

QueryStatus

Queries the object for the status of one or more commands.

Syntax
object.QueryStatus(action As DesignerActionTypes)

The QueryStatus method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes

Settings

property

AR2Pro | 39

The settings for action are:

Setting
ddActionFOpen
ddActionFSave
ddActionFPageSetup
ddActionECut
ddActionEPaste
ddActionECopy
ddActionEUndo
ddActionEDelete
ddActionEDeleteSection
ddActionElnsertReportHF
ddActionElnsertPageHF
ddActionElnsertGroupHF
ddActionEReorderGroups
ddActionElnsertField
ddActionViewExplorer
ddActionViewFieldsList
ddActionViewPropertyList
ddActionViewGrid
ddActionViewSnapToGrid
ddActionViewFullScreen
ddActionViewCodeEditor
ddActionFoAlignLefts
ddActionFoAlignRights
ddActionFoAlignCenters
ddActionFoAlignTops
ddActionFoAlignMiddles
ddActionFoAlignBottoms
ddActionFoAlignToGrid
ddActionFoAlignCenterInSec
ddActionFoSizeSameWidth
ddActionFoSizeSameHeight
ddActionFoSizeSameBoth
ddActionFoVSpaceEqual
ddActionFoVSpacelncrease
ddActionFoVSpaceDecrease
ddActionFoHSpaceEqual
ddActionFoHSpacelncrease
ddActionFoHSpaceDecrease
ddActionFoOrderBringToFront
ddActionFoOrderSendToBack
ddActionFoLockControls
ddActionFoStyle
ddActionFoFontName
ddActionFoFontSize
ddActionFoFontBold
ddActionFoFontltalic
ddActionFoTextAlignLeft
ddActionFoTextAlignCenter
ddActionFoTextAlignRight
ddActionFoForeColor
ddActionFoBackColor
ddActionFoLineStyle
ddActionFoLineColor

Description

1 - File: Open.

2 - File: Save.

3 - File: Page Setup.

4 - Edit: Cut.

5 - Edit: Paste.

6 - Edit: Copy.

7 - Edit: Undo.

8 - Edit: Delete.

9 - Edit: Delete Section.

10 - Edit: Insert Report Header/Footer.
11 - Edit: Insert Page Header/Footer.
12 - Edit: Insert Group Header/Footer.

13 - Edit:
14 - Edit:
15 - View:
16 - View:
17 - View:
18 - View:
19 - View:
20 - View:
21 - View:

Reorder Groups.
Insert Field.

Report Explorer.
Fields List.
Property Listbox.
Grid.

Snap to grid.

Full screen.

Script Code Editor.

22 - Format: Align Control Lefts.

23 - Format: Align Control Rights.
24 - Format: Align Control Centers.
25 - Format: Align Control Tops.

26 - Format: Align Control Middles.
27 - Format: Align Control Bottoms.
28 - Format: Align to Controls Grid.

29 - Format: Align :

30 - Format: Size controls to the same width.

31 - Format: Size controls to the same height.

32 - Format: Size controls to the same width and height.
33 - Format: Space controls even vertically.

34 - Format:
35 - Format:
36 - Format:
37 - Format:
38 - Format:
39 - Format:
40 - Format:

Center Control in Section.

Increase vertical spacing.
Decrease vertical spacing.

Space controls even horizontally.
Increase horizontal spacing.
Decrease horizontal spacing.
Bring control to the foreground.
Send control to the background.

41 - Format: Lock controls size and position.
42 - Format: Style.

43 - Format: Font name.

44 - Format: Font size.

45 - Format: bold.

46 - Format: Italic.

47 - Format: Align text left.
48 - Format: Align text center.
49 - Format: Align text Right.

50 - Format: Set foreground color.
51 - Format: Set background color.
52 - Format: Set line style.
53 - Format: Set line color.

AR2Pro | 40

AR2Pro | 41

ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.
Example

"Update edit nmenu itenms on status change.
Private Sub ARDesi gner1_St at usChange(ByVal action As DDActi veReportsDesi gnerCtl. DesignerActic
Sel ect Case action
Case ddActi onECopy
m ECopy. Enabl ed
m ECopy. Checked

((ARDesi gner 1. QuerySt at us(ddActi onECopy) And d
((ARDesi gner 1. QuerySt at us(ddActi onECopy) And d

' Case ..
End Sel ect
End Sub

SaveToObject

SaveToObject

Write the layout from the designer to a report object.

Syntax
object.SaveToObject(Report As IActiveReport)

The SaveToObject method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport
Example

"nmodul e vari abl e
Dimrpt As DDActiveReports2. ActiveReport

Private Sub Previ ewReport ()
On Error GoTo ehPrevi ewReport
ard. SaveToQbj ect rpt
rpt. Restart
rpt. Run Fal se
Set arv. Report Source = rpt
Exit Sub

ehPr evi ewReport :
MsgBox Str(Err.Nunber) & " - " & Err.Description, vbOKOnly, "Error: Previ ewReport"
End Sub

Remarks

You must use the SaveToObject to save the report designer to an ActiveReport instance before running the
report.

Events

ARDesigner Properties
Alert

ContextMenuOpen

Error
LayoutChanged
SelChange
StatusChange
ValidateChange

Alert

Alert

Fires when before an alert message box that requires user intervention is displayed. You can use this event

AR2Pro | 42

to replace the built-in message boxes with your own.

Syntax

Sub object_Alert(id As Integer, prompt As String, buttons As Long, result)

The Alert event syntax has the following parts:

Part

Description

id Integer - Specifies the alert message id.

prompt String - Specifies the message string to be displayed.

buttons Long - Specifies the number and style of buttons to be displayed.

result Long - used to set the return value of the event when the alert is handled by the event.

Settings

The id parameter has the following settings:

Setting
ddARAlertControlNotRegistered

ddARAlertDataSource
ddARAlertDAOSettings
ddARAlertDAO

ddARAlertFieldList

Description

1 - Report contains a control that is not registered on the client
machine.

2 - Data source returned error when updating property sheet.
3 - DAO data control settings are incorrect.

4 - DAO returned error when opening the connection or
recordset.

5 - A database error occurred when attempting to refresh the
field list window.

ddARAlertInvalidSectionForDataControl 6 - A data control cannot be added to a non-detail section.

ddARAlertDataControlAlreadyExists

ddARAlertControlCreateFailed
ddARAlertAB2DLLMissing
ddARAlertCantUndoDelete
ddARAlertDeleteFailed
ddARAlertEditCutFailed
ddARAlertEditCopyFailed
ddARAlertDuplicateStyleName
ddAlertCantDeleteStyle
ddAlertRTF
ddARAlertRTFDeleteField
ddARAlertCantDeleteDetailSection
ddARAlertDeleteSectionPrompt
ddARAlertSavelayoutFailed

7 - User tried to drop more than one data control into the detail
section.

8 - The ActiveX control can't be hosted in ActiveReports
9 - AB2DLL.DLL toolbars library is missing.

10 - The edit/delete operation can't be undone

11 - The edit/delete operation failed.

12 - The edit/cut operation failed.

13 - The edit/copy operation failed.

14 - User tried to create a style that already exists.
15 - User tried to delete the normal style.

16 - RTF control alert.

17 - Confirm deleting an RTF merge field.

18 - Detail section cannot be deleted.

19 - Confirm deleting a section.

20 - Unable to save the report layout.

Example

AR2Pro | 43

Private Sub ard_Alert(ByVal id As Integer, ByVal pronpt As String, ByVal buttons As Long, res

If id = ddARAl ert Cont r ol Not Regi st ered Then

MsgBox "Report contains an unregistered control." & _
"Contact 999-999-9999 with the following information " & _
vbCrif & Str(id) &" - " & pronpt
result =0
End | f
End Sub
ContextMenuOpen
ContextMenuOpen

Fires before a context menu is opened.

Syntax

object_ContextMenuOpen(sourceObject As Object,
menuType As ContextMenuTypes,
Cancel As Boolean)

The ContextMenuOpen event syntax has the following parts:

Part Description
sourceObject Object - A reference to the object that is opening the menu.

menuType ContextMenuTypes - Specifies the type of menu that will be opened for this sourceObject.

Cancel Boolean - determines whether the default menu handler should be cancelled. This
parameter should be set to True to disable or replace built in context menus.

Settings
The settings for menuType are:

Setting Description
ddCMSection 0 - Section context menu.
ddCMControl 1 - Control context menu.
ddCMReport 2 - Report object context menu.
ddCMRTFEditMode 3 - RichEdit context menu.

Example

' Exanpl e i npl enent ati on of the Context MenuOpen event
' The muReport, mmuControl, muSecti on and nmuRi chEdit
"are nenu itens created using VB's Menu editor
"You can use the sourceObject properties to enabl e/ disable
'your custom nenu options
Private Sub ARDesi gner1_Cont ext MenuQpen(ByVal sourceCbject As Cbject, ByVal
Sel ect Case nenuType
Case ddCMContr ol
PopupMenu mmuCont r ol
Case ddCMReport
PopupMenu mmuReport
Case ddCMsecti on
PopupMenu mmuSecti on
Case ddCMRi chedi t
PopupMenu mmuRi chEdi t
End Sel ect
Cancel = True

menuType As DDAct

AR2Pro | 44

End Sub

Error

Error

Fires when an error occurs in the designer component. This event allows you to create your own error
handler and display localized error message boxes.

Syntax

object_Error((Number As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean))

The Error event syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
Number Integer - Error number
Description String - Error description.

Scode Long - Result code.
Source String - Source of the error if applicable.
HelpFile String - Help file

HelpContext Long - Error context id, in the help file.
CancelDisplay Boolean - Set CancelDisplay = True to cancel the built in error dialog and replace it with
your own.

Example

Private Sub ARDesi gnerl Error(ByVal Nunber As Integer, Description As String, _
ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String,
ByVal Hel pContext As Long, Cancel Di splay As Bool ean)
App. LogEvent Format (Now, "nmm dd/yyyy Hh:Nn") & Str(Nunber) & " - " & Description
Cancel Di splay = True
End Sub

LayoutChanged

LayoutChanged

Fires when the layout is changed. You can use this event to monitor changes to the report layout and update
any dependent data such as SQL queries or custom user interfaces (report explorers, group sections dialog,
etc.)

Syntax

object_LayoutChanged(changedObject As Object, changeType As LayoutChangeTypes)

The LayoutChanged event syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
changedObject Object - a reference to the control or object that caused the layout change.
changeType LayoutChangeTypes - specifies the type of change.
Settings

The settings for changeType are:

AR2Pro | 45

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.
ddLCSectionsAdd 8 - A section is added.

Example

Private Sub ARDesi gner1_Layout Changed(changedObj ect As Object,
changeType As Layout ChangeTypes)
"If a group section was added or renoved then display a grouping dialog
I f changeType = ddLCSecti onAdd Then
I f changedObj ect. Type = ddSTG oupHeader Then
fr mGr oups. Show
End | f
End | f
End Sub

SelChange

SelChange

Fires when selection changes. You can use the SelectedObjects property to inspect the current selection.

Syntax
object_SelChange()

Example

' Sel Change event handl er
Private Sub ARDesi gner 1_Sel Change()
I f ARDesi gnerl. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1). Text = ARDesi gner 1. Sel ect edObj ect s(0) . Nanme
El se
St at usBar 1. Panel s(1). Text = ""
End | f
End Sub

Remarks

This event can be used to update Ul elements such as a property toolbox or status bar in your custom report
designer.

StatusChange

StatusChange

This event fires for each change in the status of the designer actions. Designer actions represent the
commands that are typically invoked from Ul elements such as a toolbar or a menu. You can use the
QueryStatus method to check the status of the changed action and update your custom Ul elements.
Syntax

object_StatusChange(action As DesignerActionTypes)

AR2Pro | 46

The StatusChange event syntax has the following parts:

Part

Description

action DesignerActionTypes - Specifies the action that caused the change as one of the actions listed

below.

Settings
The settings for action are:

Setting
ddActionFOpen
ddActionFSave
ddActionFPageSetup
ddActionECut
ddActionEPaste
ddActionECopy
ddActionEUndo
ddActionEDelete
ddActionEDeleteSection
ddActionElnsertReportHF
ddActionElnsertPageHF
ddActionElnsertGroupHF
ddActionEReorderGroups
ddActionElnsertField
ddActionViewExplorer
ddActionViewFieldsList
ddActionViewPropertyList
ddActionViewGrid
ddActionViewSnapToGrid
ddActionViewFullScreen
ddActionViewCodeEditor
ddActionFoAlignLefts
ddActionFoAlignRights
ddActionFoAlignCenters
ddActionFoAlignTops
ddActionFoAlignMiddles
ddActionFoAlignBottoms
ddActionFoAlignToGrid
ddActionFoAlignCenterInSec
ddActionFoSizeSameWidth
ddActionFoSizeSameHeight
ddActionFoSizeSameBoth
ddActionFoVSpaceEqual
ddActionFoVSpacelncrease
ddActionFoVSpaceDecrease
ddActionFoHSpaceEqual
ddActionFoHSpacelncrease
ddActionFoHSpaceDecrease
ddActionFoOrderBringToFront
ddActionFoOrderSendToBack
ddActionFoLockControls
ddActionFoStyle
ddActionFoFontName
ddActionFoFontSize
ddActionFoFontBold
ddActionFoFontltalic
ddActionFoTextAlignLeft

Description

1 - File: Open.

2 - File: Save.

3 - File: Page Setup.
4 - Edit: Cut.

5 - Edit: Paste.

6 - Edit: Copy.

7 - Edit: Undo.
8 - Edit: Delete.
9 - Edit: Delete Section.

10 - Edit:
11 - Edit:
12 - Edit:
13 - Edit:
14 - Edit:
15 - View:
16 - View:
17 - View:
18 - View:
19 - View:
20 - View:
21 - View:

Insert Report Header/Footer.
Insert Page Header/Footer.
Insert Group Header/Footer.
Reorder Groups.

Insert Field.

Report Explorer.

Fields List.

Property Listbox.

Grid.

Snap to grid.

Full screen.

Script Code Editor.

22 - Format: Align Control Lefts.

23 - Format: Align Control Rights.
24 - Format: Align Control Centers.
25 - Format: Align Control Tops.

26 - Format: Align Control Middles.
27 - Format: Align Control Bottoms.
28 - Format: Align to Controls Grid.

29 - Format: Align :

Center Control in Section.

30 - Format: Size controls to the same width.

31 - Format: Size controls to the same height.

32 - Format: Size controls to the same width and height.
33 - Format: Space controls even vertically.

34 - Format:

Increase vertical spacing.

35 - Format: Decrease vertical spacing.
36 - Format: Space controls even horizontally.

37 - Format:

Increase horizontal spacing.

38 - Format: Decrease horizontal spacing.

39 - Format: Bring control to the foreground.
40 - Format: Send control to the background.
41 - Format: Lock controls size and position.

42 - Format: Style.

43 - Format: Font name.

44 - Format: Font size.

45 - Format: bold.

46 - Format:

Italic.

47 - Format: Align text left.

AR2Pro | 47

ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline

Example

"Update edit nmenu itenms on status change.
Private Sub ARDesi gner1_StatusChange(ByVal action As DDActiveReportsDesi gnerCtl. DesignerActi
Sel ect Case action
Case ddActi onECopy
m ECopy. Enabl ed = ((ARDesi gner 1. Quer ySt at us(ddActi onECopy) And _
ddSt at Enabl ed) = ddSt at Enabl ed)
m ECopy. Checked = ((ARDesi gner 1. QuerySt at us(ddActi onECopy) And _
ddSt at Checked) = ddSt at Checked)
End Sel ect
End Sub

ValidateChange

ValidateChange

This event is fired before an item is moved, sized or deleted. You can use this event to control the end user's
actions. For example, you can prevent the user from deleting the report's data control or moving a
predefined set of controls that are part of a standard report template.

Syntax
object_ValidateChange(control As Object, changeType As LayoutChangeTypes, Cancel As Boolean)

Parameters

The ValidateChange event syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
control Object
changeType LayoutChangeTypes
Cancel Boolean
Settings
The settings for changeType are:

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.

ddLCControlAdd 7 - A new control is added to the report.

AR2Pro | 48

Example

Private Sub ARDesi gner1 ValidateChange(ByVval control As Object, _
ByVal changeType As DDActi veReportsDesignerCtl. Layout ChangeTypes,
Cancel As Bool ean)
I f changeType = ddLCControl Del ete Then
If control.Nanme = "DataControl 1" Then
MsgBox "You cannot delete the reports data source."
Cancel = True
End | f
End | f
End Sub

Selection Methods

Selection Methods

Name Type Description
Count Method Returns the number of selection objects in the collection.

object.Count
Item Method Returns the object at the selected index.

object. Item(index)

Count

Count

Returns the number of selected objects in the collection.

Syntax
object.Count()

Example

' Sel Change event handl er
Private Sub ARDesi gner1_Sel Change()
I f ARDesi gnerl. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1). Text = ARDesi gner 1. Sel ect edObj ect s(0) . Nanme

El se
St atusBar 1. Panel s(1). Text = ""
End | f
End Sub
Item
Item

Returns the selection item at the specified index.

Syntax
object. Item((index As Long))
The Item method syntax has the following parts:

Part Description

AR2Pro | 49

object An expression evaluating to an object of type Selection.
index Long
Example

' Sel Change event handl er
Private Sub ARDesi gner1_Sel Change()
I f ARDesi gnerl. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1). Text = ARDesi gner 1. Sel ect edCbj ects. |tem0). Nane
El se
St at usBar 1. Panel s(1). Text = "'
End | f
End Sub

WebCache Service

WebCache Service Objects
WebCache

WebCacheltem
WebCacheWorkerThread
WebCacheWorkerThreads

WebCache
WebCache

Name Type Description
CacheContent Method Adds an item to the WebCache collection.
Cacheltem Method Adds an item to the WebCache collection.
IsCached Method Determines whether a specific item is cached.
Item Method Returns the cached item at the specified index.
Remove Method Removes the cached item at the specified index.
RemoveAll Method Removes all cached items from the service.
Count Property Returns the number of cached items in the service.
CacheContent
CacheContent

Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection. The
Cacheltem Method should only be used when additional header information other than content type needs to
be written into the header of the cached item.

Syntax

object.CacheContent(ContentType As String, Data As Variant)

The CacheContent method syntax has the following parts:

AR2Pro | 50

Part Description
object An expression evaluating to an object of type WebCache.
ContentType String
Data Variant
Example

' The follow ng exanple perforns the follow ng

"1)Loads an ActiveReport froma presaved XML file
'2)Runs the report

'3)Exports the report to a byte array in PDF fornmat

'4) Adds the byte array to ActiveReports WebCache so
"that it may be streanmed directly to the browser

' The exanple code is placed in a user-defined function.
"A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.

"You could then do an ASP response.redirect to the

"url where the pdf export was cached.

Publi ¢ Function ExportReport() as |ong

Dimrpt As ActiveReport

Di m aWwebCache As WebCache

Di m pdf Expt As Acti veReport sPDFExport. ARExport PDF
Di m PDFByt eArray As Vari ant

Set rpt = New ActiveReport
Set aWebCache = New WebCache
Set pdf Expt = New Acti veReport sPDFExport . ARExport PDF

rpt.Load "c:\testing.rpx"

rpt.run

Cal | pdf Expt. Export Strean(r pt.Pages, PDFByteArray)

| WebCachel D = aWebCache. CacheCont ent (" Appl i cati on/ PDF", PDFByt eArray)

Export Report = | WebCachel D ' | WebCachel D can now be used to access the cached pdf fi
" ASP Code calling the above function
Di m vWebCachel D
'vWebCachel D = ar pt server. Export Report ()
' Response. Redi rect "mywebsite/webcache.dl|?" & vWebCachelD & "?"
End Function

Cacheltem

Cacheltem

Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection. The
Cacheltem Method should only be used when additional header information other than content type needs to
be written into the header of the cached item.

Syntax

object.Cacheltem(Header As String, Data As Variant)

The Cacheltem method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Header String - A valid header string to send to the browser client.

Data Variant - cache content.

AR2Pro | 51

Example

' The follow ng exanple perforns the follow ng

"1)Loads an ActiveReport froma presaved XML file
'2)Runs the report

'3)Exports the report to a byte array in PDF fornmat

'"4) Adds the byte array to ActiveReports WebCache so
"that it may be streanmed directly to the browser

' The exanple code is placed in a user-defined function.
"A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.

"You could then do an ASP response.redirect to the

"url where the pdf export was cached.

Publi ¢ Function ExportReport() as |long

Dimrpt As ActiveReport

Di m aWwebCache As WebCache

Di m pdf Expt As Acti veReport sPDFExport. ARExport PDF
Di m PDFByt eArray As Vari ant

Set rpt = New ActiveReport
Set aWebCache = New WebCache
Set pdf Expt = New Acti veReport sPDFExport . ARExport PDF

rpt.Load "c:\testing.rpx"

rpt.run

Cal | pdf Expt. Export Strean(rpt.Pages, PDFByteArray)

| WebCachel D = aWebCache. CacheCont ent (" Appl i cati on/ PDF", PDFByt eArray)

Export Report = | WebCachel D ' | WebCachel D can now be used to access the cached pdf fi
" ASP Code calling the above function

Di m vWebCachel D

'vWebCachel D = ar pt server. Export Report ()

' Response. Redi rect "mywebsite/webcache.dl|?" & vWebCachelD & "?"
End Function

IsCached

IsCached

Returns a Boolean value telling the developer if a specific item is still cached or not.

Syntax
object.1sCached(ld As String)

The IsCached method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Id String
Example
' Checking to see if a webcache id is still cached

Di m bl nl sCached As Bool ean
Di m aWwebCache As WebCache

Set aWebCache = New WebCache
bl nl sCached=aWebCache. | sCached("1")

AR2Pro | 52

Item

Item

Allows random access to individual nodes within the WebCache collection.

Syntax
object. Item((Index As Variant))

The Item method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant
Example

' The exanpl e code denpnstrates how to | oop

"through all of the items in the

"webcache col |l ection and

"print out each itens tinmeout val ue

'Pl ease Note that For EACH is not used in the exanple.

' The _NewEnum property of the webcache collection

'"is not supported at this time so you cannot use For Each.

Dim x As I|nteger
For x = 0 To awWwbCache. Count - 1

Debug. Print "awebcache.item(" & x & ").timeout = " & aWebCache. Itenm(x). Ti neQut
Next

Remove

Remove

Removes an element from the WebCache collection using the index of the cached item.

Syntax
object.Remove(Index As Variant)

The Remove method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant
Example

"In this exanpl e awebCache represents a declared instance of the webcache cl ass
'contai ning cached itens

‘renoves the first cached itemin the webcache collection

aWebCache. remove(0)

RemoveAll

RemoveAll

Removes all cached items from the WebCache Collection.

AR2Pro | 53

Syntax
object.RemoveAll()

The RemoveAll method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Example

"In this exanpl e awebCache represents a declared instance of the webcache cl ass
'contai ning cached itens

‘renpves all cached itemin the webcache collection

aWebCache. r enpveal |

Count

Count

Returns the current number of Cached Items in the WebCache Collection - Read Only.

Syntax
[value=]object.Count

The Count property syntax has the following parts:

Part Description
object A valid WebCache object
value An Integer value.
Data Type
Integer
Example

"In this exanpl e awebCache represents a declared instance of the webcache cl ass
'contai ning cached itens

dimicount as integer

i count = aWebCache. count

WebCacheltem
WebCacheltem
Name Type Description
Data Property Returns the data of the cached item.
Header Property Returns the header of the cached item.
Id Property Returns the cached items Id that is used by the ISAPI filter.
Persistence Property Determines when the cached items will be destroyed.
Timeout Property Determines the time in minutes that a cached item will remain in the cache.

Data

AR2Pro | 54

Data
Returns the data of the cached item - Read Only.

Syntax
[value =]object.Data

The Data property syntax has the following parts:

Part Description
object A valid WebCacheltem object
value A Variant value.
Data Type
Variant
Example

' Thi s exanpl e denpnstrates how to use the
'Data property of the WebCachltem cl ass.

"In the exanpl e "aWebCache" is a pre-existing
"vari abl e di nensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWwebCachel tem As New WebCachel tem
Set aWebCacheltem = aWebCache. | t en(0)
debug. print aWebCacheltem data

Header

Header

Returns the header of the cached item - Read Only.

Syntax
[value =]object.Header

The Header property syntax has the following parts:

Part Description
object A valid WebCacheltem object
value A String value.
Data Type
String
Example

' Thi s exanpl e denpnstrates how to use the

" header property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"vari abl e di nensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWebCacheltem As New WebCachel tem
Set aWebCacheltem = aWebCache. | t en(0)

debug. print aWebCachel t em header

AR2Pro | 55

Id

id
Returns the cached items Id that is used by the ISAPI filter - Read Only.

Syntax
[value =]object.Id

The 1d property syntax has the following parts:

Part Description
object A valid WebCacheltem object
value A String value.
Data Type
String
Example

' Thi s exanpl e denpnstrates how to use the

"Id property of the WebCachltem cl ass.

"In the exanpl e "aWebCache" is a pre-existing
"vari abl e di nensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWebCacheltem As New WebCachel tem
Set aWebCacheltem = aWebCache. |t en(0)

debug. print awWwebCacheltem | d

Persistence

Persistence

Determines when the cached item will be destroyed - Read/Write.

Syntax
object.Persistence [= value]

The Persistence property syntax has the following parts:

Part Description
object A valid WebCacheltem object
value A PersistenceTypes value.
Settings

The settings for value are:

Setting Description
ddPermanent 1 - Cached item will stay alive forever. The item has to be destroyed using an explicit
WebCache.Remove call.
ddTimeout 2 - Cached item will remain in the cache for a time period specified by the end user via
the WebCacheltem's Timeout property. A possible usage scenario is setting the
Timeout property to the SessionTimeout value under I1S.
ddAccessedOnce 3 - Cached item is destroyed immediately after the client accesses the data one time

Data Type

AR2Pro | 56

PersistenceTypes

Example

' Thi s exanpl e denpnstrates how to use the

' Persi stence property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"vari abl e di nensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWebCacheltem As New WebCachel tem
Set aWebCacheltem = aWebCache. | t en(0)

aWebCachel t em Persi stence = 2

Remarks

Default value = ddAccessedOnce

TimeOut

TimeOut

Determines the time in minutes that a cached item will remain in the cache - Read/Write.

Note: The Timeout property is only used if the persistence property of the WebCacheltem is set to 2 -
ddTimeout.

Syntax

object.TimeOut [= value]

The TimeOut property syntax has the following parts:

Part Description
object A valid WebCacheltem object
value Long value.
Data Type
Long
Example

' Thi s exanpl e denpnstrates how to use the

" Ti meout property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"vari abl e di nensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWebCacheltem As New WebCachel tem

Set aWebCacheltem = aWebCache. | t en(0)

aWebCacheltem Ti neout = 2

Remarks

Default value = 0

WebCacheWorkerThread

WebCacheWorkerThread

Name Type Description
AveragePerRequest Property Returns the average number of milliseconds per request.

AR2Pro | 57

NumberOfRequest Property Returns the number of requests that the thread has serviced.
Threadld Property Returns the id of the WebCacheWorkerThread.
TotalTimeServicingRequest Property Returns the total time used servicing a request in milliseconds.

TotalTimeServicingRequest

TotalTimeServicingRequest

Returns the total time used servicing a request in milliseconds. The time waiting for a request is not included
- Read Only.

Syntax

[value=] object.TotalTimeServicingRequest

The TotalTimeServicingRequest property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThread object
value A Long value.
Data Type
Long
Example

Di m nunThr eads As New WebCacheWor ker Thr eads
Di m aThread As New WebCacheWor ker Thr ead

Set aThread = nuniThreads. | t en(0)

Debug. Print aThread. Threadl D
Debug. Print aThread. Tot al Ti neServi ci ngRequest

Threadld

Threadld
Returns the id of the WebCacheWorkerThread - Read Only.

Syntax
[value=] object.Threadld
The Threadld property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

Data Type

Integer

Example

'"This exanple prints out several properties

"for all of the workerthreads in the workerthreads
"collection. The sanple adds the followi ng properties to a
"standard vb listView control called |stThreads.

' Thr eadl d, Aver agePer Request, and Nunber of Request .

Dimaltem As Listltem

Di m aThread As WebCacheWor ker Thr ead

Di m aThreads As New WebCacheWor ker Thr eads
Di m nSi ze As |nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads. | ten{nl ndex)
Set altem = | stThreads. Listltens. Add(, , CStr(aThread. Threadl D))
altem Subltens(1l) = CStr(aThread. Aver agePer Request)
altem Subltenms(2) = CStr(aThread. Nunber Of Request)
Next nl ndex

NumberOfRequest

NumberOfRequest

Returns the number of requests that the thread has serviced - Read Only.

Syntax
[value=] object.NumberOfRequest

The NumberOfRequest property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThread object
value A Long value.
Data Type
Long
Example

'"This exanple prints out several properties

"for all of the workerthreads in the workerthreads
"collection. The sanple adds the followi ng properties to a
"standard vb listView control called |stThreads.

' Thr eadl d, Aver agePer Request, and Nunber of Request .

Dimaltem As Listltem

Di m aThread As WebCacheWor ker Thr ead

Di m aThr eads As New WebCacheWor ker Thr eads
Di m nSi ze As |nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads. | ten{nl ndex)
Set altem = | stThreads. Listltens. Add(, , CStr(aThread. Threadl D))
altem Subl tems(1) CStr (aThread. Aver agePer Request)
al t em Subl t ens(2) CStr (aThread. Nunber Of Request)
Next nl ndex

AveragePerRequest

AveragePerRequest

Returns the average number of milliseconds per request - Read Only.

Syntax

AR2Pro | 58

[value=] object.AveragePerRequest
The AveragePerRequest property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

Data Type

Integer

Example

'"This exanple prints out several properties

"for all of the workerthreads in the workerthreads
"collection. The sanple adds the followi ng properties to a
"standard vb listView control called |stThreads.

' Thr eadl d, Aver agePer Request, and Nunber of Request .

Dimaltem As Listltem

Di m aThread As WebCacheWor ker Thr ead

Di m aThr eads As New WebCacheWor ker Thr eads
Di m nSi ze As |nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads. | ten{nl ndex)
Set altem = | stThreads. Listltens. Add(, , CStr(aThread. Threadl D))
altem Subltens(1l) = CStr(aThread. Aver agePer Request)
altem Subltenms(2) = CStr(aThread. Nunber Of Request)
Next nl ndex

WebCacheWorkerThreads

WebCacheWorkerThreads

Name Type Description
Item Method Returns the Thread object at the specified index.
Count Property Returns the number of WebCacheWorkerThreads in the collection.

Count

Count

Returns the current number of WebCacheWorkerThreads.

Syntax
[value=] object.count

The Count property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThreads object
value An Integer value.

Data Type

AR2Pro | 59

Integer

Example

Di m nunThr eads As WebCacheWor ker Thr eads
Set nuniThreads = New WebCacheWsr ker Thr eads

Debug. Print "workerthread count = " & nuniThreads. Count

Item

Item

Allows random access to individual nodes within the WebCacheWorkerThreads collection.

Syntax
object. Item((Index As Variant))
The Item method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCacheWorkerThreads.
Index Variant

Example

Di m nunThr eads As New WebCacheWor ker Thr eads
Di m aThread as New WebCacheWor ker Thr ead

Set aThread = nuniThreads. |t em(0)

Debug. Print aThread. |d

Property List Control

Property List Objects
PropList Control Object
PropNode Object

PropNodes Collection

PropList Control

AR2Pro | 60

PropList

Name Type Description
AllowColumnResize Property Specifies whether the user is allowed to resize the property list

columns.

Backcolor Property Specifies the background color of the property list control.
BorderStyle Property Specifies the border style of the control.
Categorized Property Sets/returns if property list nodes are categorized or alphabetical.
Enabled Property Determines whether the property list control is enabled or disabled.
Font Property Specifies the font used to render text in the property list control.
ForeColor Property Specifies the foreground color of the property list.
hwnd Property Returns the property list window handle.

Properties Property Returns property nodes collection.

AR2Pro | 61

ShowDescription Property Sets/returns if property description pane is visible.
ShowObjectCombobox Property Sets/returns if object combobox is visible.
ShowReadOnlyProp Property Sets/returns weather readonly properties are shown.

ShowToolbar Property Sets/returns if toolbar is visible.

Sorted Property Determines whether the properties are sorted alphabetically in the
list.

AddObject Method Adds an obj_ect reference to the property listbox and updates the
combobox list.

Clear Method Removes all nodes from the property list.

Refresh Method Updates the propertylistbox with new values.

SelectObjects Method Sets the current selection. object can be a single COM object or an
array of COM objects.

ButtonClick Event Fires when a button on ddPLButton property is clicked.

Error Event Fires when an internal error occurs in the property list control.

FetchData Event Fires when enum combobox dropdown is pressed.

FetchDataDescription Event Fires when combobox is updating its text or listbox.

ObjectChanged Event Fired when user selected a new object from the object combobox

PropertyChanged Event Fires when property value has been changed

PropertyValidate Event Fired before a value is stored in the property node when user makes
a change to the value

Sorted

Sorted

Determines whether the properties are sorted alphabetically in the list.

Syntax
object.Sorted [= value]

The Sorted property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Properties are sorted alphabetically.
False Properties are listed in the order they were added.
Data Type
Boolean
Remarks

Default value = True

ShowToolbar

ShowToolbar

Sets/returns if toolbar is visible.

Syntax

object.ShowToolbar [= value]

AR2Pro | 62

The ShowToolbar property syntax has the following parts:

Part Description
object A valid ProplList object
value A Boolean value.

Settings
The settings for value are:

Setting Description
True Displays the toolbar.
False Hides the toolbar.

Data Type
Boolean

Remarks
Default

ShowReadOnlyProp

ShowReadOnlyProp

Sets/returns weather readonly properties are shown.

Syntax
object.ShowReadOnlyProp [= value]
The ShowReadOnlyProp property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Displays the readonly properties.
False Hides the readonly properties.
Data Type
Boolean
Remarks

Default value = True

ShowObjectCombobox

ShowObjectCombobox

Sets/returns if object combobox is visible.

Syntax
object.ShowObjectCombobox [= value]

The ShowObjectCombobox property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Displays the objects combobox.
False Hides the objects combobox.
Data Type
Boolean
Remarks

Default value = True

ShowDescription

ShowDescription

Sets/returns if property description pane is visible.

Syntax
object.ShowDescription [= value]

The ShowDescription property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Description pane is visible.
False Description pane is not visible.
Data Type
Boolean
Remarks

Default value = True

Properties

Properties

Returns property nodes collection.

Syntax
Set value = object.Properties

The Properties property syntax has the following parts:

AR2Pro | 63

Part Description
object A valid object
value A valid PropNodes collection.

Data Type
IPropNodes

hWnd

hwnd

Returns the property list window handle.

Syntax
value = object.hWnd
The hWnd property syntax has the following parts:

Part Description
object A valid ProplList object.
value Returns the property list window handle.

Data Type
OLE_HANDLE

ForeColor

ForeColor

Specifies the foreground color of the property list.

Syntax
object.ForeColor [= value]

The ForeColor property syntax has the following parts:

Part Description
object A valid ProplList object.
value A valid OLE_COLOR value.
Data Type
OLE_COLOR
Remarks

Default value = vbWindowText

Font

Font

Specifies the font used to render text in the property list control.

Syntax
object.Font [= value]

The Font property syntax has the following parts:

AR2Pro | 64

Part Description
object A valid ProplList object
value A valid Font object.

Data Type
Font

Enabled

Enabled

Determines whether the property list control is enabled or disabled.

Syntax
object.Enabled [= value]

The Enabled property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Property list control is enabled.
False Property list control is disabled.
Data Type
Boolean
Remarks

Default value = True

Categorized

Categorized

Sets/returns if property list nodes are categorized or alphabetical.

Syntax
object.Categorized [= value]

The Categorized property syntax has the following parts:

Part Description
object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:
Setting Description
True Property list nodes are categorized in a treeview.

False Property list nodes are listed alphabetically.

AR2Pro | 65

AR2Pro | 66

Data Type

Boolean

Remarks

Default value = True

BorderStyle

BorderStyle

Specifies the border style of the control.

Syntax
object.BorderStyle [= value]
The BorderStyle property syntax has the following parts:

Part Description
object A valid ProplList object
value A ddPLBorderStyle setting.
Settings
The settings for value are:

Setting Description

ddPLNone 0 - No border.
ddPLSunken 1 - Sunken border.

Data Type
ddPLBorderStyle

Remarks
Default value = ddPLSunken

BackColor

BackColor

Specifies the background color of the property list control.

Syntax
object.BackColor [= value]

The BackColor property syntax has the following parts:

Part Description
object A valid ProplList object
value A valid color value.
Data Type
OLE_COLOR
Remarks

Default value = vbWindowBackColor

AllowColumnResize

AllowColumnResize

Specifies whether the user is allowed to resize the property list columns.

Syntax
object.AllowColumnResize [= value]

The AllowColumnResize property syntax has the following parts:

Part Description
object A valid ProplList object
value A Boolean value.
Settings
The settings for value are:

Setting Description
True Allows user to resize the property list columns.
False Does not allow the user to size the columns.

Data Type
Boolean
Remarks

Default value = True

SelectObjects

SelectObjects

Sets the current selection. object can be a single COM object or an array of COM objects.

Syntax
object_SelectObjects(selObject As Variant)
The SelectObjects method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
selObject Variant - a single object or an array of objects.
Example

Sel ect a single object to the property list
plist. Sel ect Obj ects Text1l

"Select multiple objects (property list would

' aggregate common properties).
plist.Sel ect Obj ects Array(Text1l, Text2, Text3)

Refresh

Refresh

Updates the propertylistbox with new values.

Syntax

AR2Pro | 67

AR2Pro | 68

object_Refresh()

The Refresh method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ProplList.
Clear
Clear

Removes all nodes from the property list.

Syntax
object_Clear()

The Clear method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
AddObject
AddObject

Adds an object reference to the property listbox and updates the combobox list.

Syntax
object_AddObject(newObject As Object)
The AddObject method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
newObject Object
Example

'‘Add an object to the property list
plist.AddObject Textl
plist.AddObject Text2

PropertyValidate

PropertyValidate

Fired before a value is stored in the property node when user makes a change to the value. Used to validate
an entry.

Syntax

object_PropertyValidate((property As IPropNode, newValue As Variant, Cancel As Boolean))

The PropertyValidate event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the current property.
newValue Variant - new property value.

Cancel Boolean - by ref parameter, allows you to cancel the change.

AR2Pro | 69

ObjectChanged

ObjectChanged

Fired when user selected a new object from the object combobox.

Syntax
object_ObjectChanged((newObject As Object))
The ObjectChanged event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
newObject Object - a reference to the new selected object.
PropertyChanged
PropertyChanged

Fires when property value has been changed.

Syntax
object_PropertyChanged((property As IPropNode))

The PropertyChanged event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the changed property nodes.

FetchDataDescription

FetchDataDescription

Fires when comobox is updating its text or listbox. You can use this event to provide alternate description
string for each enum value.

Syntax

object _FetchDataDescription((property As IPropNode, Value As Variant, Description As Variant))

The FetchDataDescription event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property PropNode
Value Variant
Description Variant
Example

Thi s exanple nodifies the descriptions of all boolean properties to German
Private Sub PropListl FetchDataDescription(ByVal property As DDPropertyListCtl.|PropNode,
ByVal Value As Variant, Description As Variant)
If property. Type = ddPLBool ean Then
If (Value = True) Then
Description = "Ja"
El se
Description = "Nein"
End | f
End | f

AR2Pro | 70

End Sub

FetchData

FetchData

Fires when enum combobox dropdown is pressed. You can change the items in the combobox by using
node.ClearEnums and node.AddEnum methods.

Syntax

object_FetchData((property As IPropNode))

The FetchData event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode
Example

Private Sub pl _FetchData (ByVal property As DDPropertylListCtl.|PropNode)
Sel ect Case property. Nane
Case "State"
property. Cl ear Enunms
property. AddEnum "AL", "Al abama"
property. AddEnum " CA", "California"
property. AddEnum "OH", " Chi 0"
property. AddEnum "NC', "North Carolina"
End Sel ect
End Sub

Error

Error

Fires when an internal error occurs in the property list control.

Syntax

object_Error((Number As Integer, Description As ReturnString, Scode As Long,
Source As String, HelpFile As String, HelpContext As Long, CancelDisplay As ReturnBool))

The Error event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
Number Integer - Error number.

Description ReturnString - Brief description of the error.
Scode Long - Result code.

Source String - Error source.

HelpFile String - Help file.

HelpContext Long - Help context id.
CancelDisplay ReturnBool - Boolean variable, used to suspend the built-in error message box.

Example

Handl e Propertylist errors

Private Sub PropertyListl Error(Nunber As |Integer, Description As ReturnString,
SCode As Long, Source As String, HelpFile As String, Hel pContext As Long,
Cancel Di spl ay As Bool ean)

AR2Pro | 71

"Display the error number and description to a forms status bar instead
"of an error message box
statusbar 1. Panel s(1). Text = "Error: " & Str(Nunber) & " - " & Description
Cancel Di splay = True

End Sub

ButtonClick

ButtonClick

Fires when a button on ddPLButton property is clicked.

Syntax
object_ButtonClick(property As IPropNode)

The ButtonClick event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode
Example

"Handl e the border property with a custom di al og
Private Sub PropertyListl ButtonClick(property as |PropNode)
If property. Name = "Border" Then
f rmBor der s. Show vbModal
End | f
End Sub

PropNode Object

PropNode

Name Type Description
AddEnum Method Adds a new enumeration value to the property
ClearEnums Method Clear all enumeration values for property
Category Property Sets/returns optional property category name.
Children Property Returns child property collection.
Description Property Sets/returns description for property.
Name Property Sets/returns property name.
Type Property Sets/returns Ul type for property.
Value Property Sets/returns value of property
AddEnum
AddEnum

Adds a new enumeration value to the property.

Syntax
object. AddEnum (Value As Variant, Description As Variant)
The AddEnum method syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropNode.
Value Variant - value of the enum.

Description Variant - description of the enum.

Example

Private Sub pl _FetchDat a(ByVal property As DDPropertyListCtl.|PropNode)
Sel ect Case property. Nane
Case "State"
property. Cl ear Enunms
property. AddEnum "AL", "Al abama"
property. AddEnum " CA", "California"
property. AddEnum "OH', " Chi 0"
property. AddEnum "NC', "North Carolina"
End Sel ect
End Sub

ClearEnums

ClearEnums

Clear all enumeration values for property.

Syntax
object.ClearEnums()

The ClearEnums method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNode.
Example

Private Sub pl _FetchData(ByVal property As DDPropertyListCtl.|PropNode)
Sel ect Case property. Nane
Case "State"
property. Cl ear Enunms
property. AddEnum "AL", "Al abama"
property. AddEnum " CA", "California"
property. AddEnum "OH", " Chi 0"
property. AddEnum "NC', "North Carolina"
End Sel ect
End Sub

Category

Category

Sets/returns optional property category name.

Syntax
object.Category [= value]

The Category property syntax has the following parts:

Part Description
object A valid PropNode object
value A String value.
Data Type

String

AR2Pro | 72

Children

Children

Returns child property collection.

Syntax
object.Children [= value]

The Children property syntax has the following parts:

Part Description
object A valid PropNode object
value A PropNodes Collection.
Data Type
IPropNodes
Example

'Create a conplex property Address with child nodes.
Set nod = New PropNode

nod. Cat egory = "Address"
nod. Nane = "Tel ephone"

nod. Type = ddPLLabel

Set subNod = New PropNode
subNod. Cat egory = "Address"
subNod. Nanme = "Hone"
subNod. Type = ddPLStri ng
nod. Chi | dren. Add subNod

Set subNod = New PropNode
subNod. Cat egory = "Address"
subNod. Nane = "Busi ness"
subNod. Type = ddPLStri ng
nod. Chi | dren. Add subNod

pl . Properties. Add nod

Description

Description

Sets/returns description for property.

Syntax
object.Description [= value]

The Description property syntax has the following parts:

Part Description
object A valid PropNode object
value A String value.
Data Type
String
Name

Name

AR2Pro | 73

Sets/returns property name.

Syntax

object.Name [= value]

Values
The Name property syntax has the following parts:

Part Description
object A valid PropNode object
value A String value.

Data Type
String

Type

Type

Sets/returns Ul type for property.

Syntax

object.Type [= value]

The Type property syntax has the following parts:

AR2Pro | 74

Part Description

object A valid PropNode object
value A ddPLNodeType setting.
Settings
The settings for value are:

Setting Description
ddPLString 0 -A string property.
ddPLLabel 1 - A static label.
ddPLEnum 2 - An enumerated property editor.
ddPLBoolean 3 - A Boolean property editor.
ddPLColor 4 - A color property editor.
ddPLStringCombo 5 - A string editor with a combobox.
ddPLPicture 6 - A picture property editor.
ddPLFont 7 - A font property editor.
ddPLButton 16 - Adds a custom button to the property editor, can be combined with any of the

other types.

Data Type
ddPLNodeType

Value

Value

AR2Pro | 75

Sets/returns value of property. Call the refresh method to update the property listbox with the new value.

Syntax

object.Value [= value]

Values

The Value property syntax has the following parts:

Part Description
object A valid PropNode object
value A Variant value.
Data Type

Variant

PropNodes Collection

PropNodes
Name Type Description
Add Method Adds the specified node object to the collection.
Count Method Returns the number of property nodes in the collection.
Item Method Returns the property node object at the specified index.

Remove Method Removes a node from the collection at the specified index

Remove

Remove

Removes a node from the collection at the specified index.

Syntax
object.Remove(Index As Variant)
The Remove method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNodes.
Index Variant - Index of the node to be removed from the collection.

Item

Item

Returns the property node object at the specified index.

Syntax
object.ltem(Index As Variant)
The Item method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNodes.

Index Variant

Count

Count

Returns the number of property nodes in the collection.

Syntax
object.Count()

The Count method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNodes.
Add
Add

Adds the specified node object to the collection.

Syntax
object.Add(property As PropNode)
The Add method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNodes.
property PropNode object to be added.

Example

Set nod = New PropNode
nod. Cat egory = "Address"
nod. Nane = "State"

nod. Type = ddPLEnum

pl . Properties. Add nod

AR2Pro | 76

	User Guide
	Overview
	Run-time Designer Control
	Introduction
	Using Run-time Designer Control
	Adding Run-time Designer to Visual Basic
	Adding Run-time Designer to your Project
	Working with the Designer at Run-time
	Saving and Loading Report Layouts
	Using the Designer Events
	Using Scripting
	Custom Toolbars and Menus
	Included Sample Projects
	Deployment and Distribution

	WebCache Service and ISAPI DLL
	Introduction
	Installation
	Deployment
	Using the WebCache Service

	Developers Reference
	ActiveReports Run-time Designer
	ARDesigner
	Properties
	GridSnap
	GridVisible
	GridX
	GridY
	IsDirty
	Locked
	Report
	RulerUnits
	SelectedObjects
	ToolbarsAccessible
	ToolbarsVisible
	ToolboxItem

	Methods
	ExecuteAction
	GetSectionFromPoint
	LoadFromObject
	NewLayout
	QueryStatus
	SaveToObject

	Events
	Alert
	ContextMenuOpen
	Error
	LayoutChanged
	SelChange
	StatusChange
	ValidateChange

	Selection Methods
	Count
	Item

	WebCache Service
	WebCache
	CacheContent
	CacheItem
	IsCached
	Item
	Remove
	RemoveAll
	Count

	WebCacheItem
	Data
	Header
	Id
	Persistence
	TimeOut

	WebCacheWorkerThread
	TotalTimeServicingRequest
	ThreadId
	NumberOfRequest
	AveragePerRequest

	WebCacheWorkerThreads
	Count
	Item

	Property List Control
	PropList Control
	Sorted
	ShowToolbar
	ShowReadOnlyProp
	ShowObjectCombobox
	ShowDescription
	Properties
	hWnd
	ForeColor
	Font
	Enabled
	Categorized
	BorderStyle
	BackColor
	AllowColumnResize
	SelectObjects
	Refresh
	Clear
	AddObject
	PropertyValidate
	ObjectChanged
	PropertyChanged
	FetchDataDescription
	FetchData
	Error
	ButtonClick

	PropNode Object
	AddEnum
	ClearEnums
	Category
	Children
	Description
	Name
	Type
	Value

	PropNodes Collection
	Remove
	Item
	Count
	Add

