ActiveReports 2.0

Professional Edition

Data Dynamics

2600 Tiller Lane

Columbus, Ohio 43231

Copyright © 2001 Data Dynamics, Ltd. All Rights Reserved. ActiveReports and the ActiveReports logo are
registered trademarks of Data Dynamics, Ltd. All other trademarks are property of their respective owners.

Table of Contents

OV EIVIBW ..ttt sttt s b et st e bttt e st e e bt et e sae e s beenbeeseenbeentenaeesseenneaseenrens 2
RUNLIME DESIGNEr CONTIOI ...ttt e e e e e e e e e e e e eas 2
T o o [N Tex 1T] o HNU PP 2
PerSISIENCE AP ... e 2
User Interface CUSIOMIZALION..........iiiiiii e 2
TOOIDAIS ANA IMENUS ..ottt ettt e e st e besa e st s te e ebeseenesbesaenesseneaneneas 2
(DS o T=T YUy = Vo =T OSSPSR 3
Property Sheets
Script Editor......ccovevveviiennne.
(0] a1 10T (S oo]| oo) QTSSO 3
AlertS aNd EITOr MESSAGES ...c.coueoiruirieerieierierieiertaeseeseeeseeessessesesseessesseseseenesseseessseenesseseenesseneasesenn 3
Using Runtime DeSigner CONMIOL..........ciuiiiiii i e e e e 4
Adding Runtime Designer t0 Visual BaSIC.........cccuveiiiiiiiiiieiiciie e 4
Adding Runtime Designer t0 YOUr PrOJECEccviiviiiie e e 5
Working with the Designer at RUNtIME..........ooviiiiiiiii e 8
Saving and Loading RePOrt LAYOULS........ovuuiiiieiiieiieee e e e e e e e 10
Using the DesigNer EVENTScvuiiieie et e e e e e 13
USING SCIPLING «. ettt ettt e e e e et e e eeens 19
Custom Toolbars and MENUSciuiiii e e e e e e e 22
Included Sample ProjeCTS.......ccuiiiiie e 22
Deployment and DistriDULION...........ooouiiiiii e 22
Web Server DIStDULIONcoiiee et e st ebene 23
WebCache Service and ISAPI DLLc..uiiuii e 23
T o [N ex 1T] o EOU PP 23
103 =11 F= 11T o PP PP UPTRPPPI 23
[1=][0)Y 41 o 23
UsIiNg the WEDCACNE SEIVICEiiiiii i e e e ees 24
DeVvelOpers REFEIENCE.........oo e
ActiveReports Runtime Designer
AR D B SIGNET ...ttt
LT To 15T 4 F= T TSR
GridVisible......ccccovveernnnne.
GridX....
GridY oo
ISDIIY ..
Locked......cocoovvinneeniinieiens
RepOrt.....ccovvrireneneneee
RulerUnitsccccooeveevennncne
SelectedObjects.........c..c......
ToolbarsAccessible..............
ToolbarsVisible..........ccco.......

QL0 0] | Y0) 4] (=] 1o S R
ExecuteAction.......ccccceeeeeeveeveenen.

GetSectionFromPoint
LoadFromObiject.....
NewLayout............
QueryStatus
STo V= o 1@] 1= Tox SRS
A (= SR

LayoutChanged...
SelChange............
StatusChange......
ValidAtECRNANGE ..oveeceiteece ettt b e et et e e b e s re e et e saeneereneatens

ST [1[0 o N

WebCache Service Objects
AVA =] o @ Tod o -
(OF=To] a1-T@40] 01 (Y o | SO
[OF=Ted 011 (=11 ¢ [
IsCached

Persistence
THMEOUL... vttt e be e e e et e e besbesbesbeeaeereesee s e b e sbesbeebeebeeneensensenbenbesbeseesreers
WebCacheWorkerThread
AVEIAgEPEIREQUESL ...ttt
NUMDBDEIOTREQUEST ...ttt b et e b e e e st e e nenean
Threadld........cccooeeeveieeeiececeeenns
TotalTimeServicingRequest
WebCacheWOorkerTRreadsouiiiiiii e

Property LISt ObJECtS. ... i e
(0T 0]
AlIOWCOIUMNRESIZE ...ttt e s e s be s beeaeeasesaeeesreseestesrenaeens
BackColor.......ccoceveevvvvreeeeeeeen
BorderStyle.......
Categorized
Enabled.............

PIOPEITIES ...ttt b bbbt b et b bbb
ShowDescription..........ccoeevereeuene

ShowObjectCombobox
ShowReadOnlyProp..........cccceeu....
ShowToolbar.......ccocoevrieiienennee

SelectObjectsccooevevenrcnineenne
ButtonClicK........cccovvverrrrenirinene

FetchData

FetchDataDescription

ObjectChanged.........cc.cocoeverenee

PropertyChanged..........ccccovueuee.

PropertyValIdALecooiiiiiieeie ettt b e se et st neene e
PrOPINOGE e

AGAENUIM .o b bbb e bbbt eb s nen s

ClearEnums........ccccvceveienenirenennens

Category ..o

Children........ccoevvvvnvirrece,

YU o] o o] @ =g Lo I I Lo =T 0 17 1 o

License Agreement and Limited WAaITANTYcoouuiiiiiiiiiiieee e 77
YU o] o o] AU PP P PPN 78

Product REGISIFALIONciiiiiiiii e e 78
TECHNICAl SUPPOIT .. .ceeieie e e 78
VB SO e 79
LS] €1 701U o PR 79
[(oo [o A0 oo =T L= PP 79
YU T o 1= 1 1 80
Media DEfeCtS POLICYcuuiii i 80

Developer’s Guide

Overview

ActiveReports Professional Edition includes three components that allow you to provide custom
reporting solutions to your end users. These reporting solutions can range from a built-in
customized report designer to a complete reporting and information delivery server in Internet or
intranet settings.

The components include:
o0 Runtime Designer Control

0 WebCache Service and ISAPI DLL
o0 Property List Control

Runtime Designer Control

0 Introduction
0 Using Runtime Designer Control
Introduction

The runtime designer control allows you to host the ActiveReports designer in your application
and provide end-user report editing capabilities. The control's methods and properties provides
easy access to save and load report layouts, monitor and control the design environment and
customize the look and feel to satisfy the needs of your end users.

Persistence API

The designer control's Report property provides access to the layout elements of the report, its
sections and its controls. The persistence API allows you to save and load the report layout. It
includes the following properties and methods.

LoadFromObject loads the report layout from an existing report object into the designer.
SaveToObject, applies the new layout to an existing report object.

NewLayout clears the current layout, including sections, controls and starts a new report layout.
All property settings are returned to default values.

IsDirty, returns whether the report has been modified since the last save or load operation. It can
be used to enable/disable a save button.

User Interface Customization

API's for User Interface customization have the goal of providing hooks into the designer that will
let developers attach their own custom menus, toolbars, field/database browsers, script editors,
alert dialogs and property sheets.

Toolbars and Menus
You can replace built-in menus and toolbars by first setting the ToolbarsVisible,
ToolbarsAccessible properties on the designer control to hide the built-in UI.

All menu and toolbar commands are called actions. There are over 50 actions that are defined in
the designer control.

If you are using a pull method to update your toolbar and menu states using idle-time processing,
you can use the QueryStatus method to check if a certain action (such as Edit/Cut) is
enabled/disabled, checked/unchecked.

2

In addition, the designer control fires StatusChange event when the status of the tools change
allowing you to update the Ul to reflect these changes.

ExecuteAction method provides the ability to perform most of the designer functions with a single
call. Alternatively, actions that are not supported by ExecuteAction (ones that require a
parameter such as color, style and font settings) can be executed by setting the control or section
properties directly using the Report property.

Designer Surface
The grid settings can be modified using the following properties

0 GridX and GridY determine the number of grid points in each ruler unit.

0 GridVisible determines whether the grid is visible or not.

o GridSnap specifies whether the controls should snap to the visible grid points.

o0 RulerUnits allows you to select ruler units from either US or metric units.

Property Sheets

The runtime designer control allows you to replace the built-in property toolbox and provide your
own selection editing Ul. The SelChange event fires when the user changes the current selected
object in the designer. You can retrieve a list of the selected objects using the SelectedObjects
collection.

ActiveReports Professional includes a property listbox ActiveX called "Data Dynamics Property
ListBox" that can be used to create customized design environments based on your users needs.

Script Editor

The built-in syntax-highlighting script editor is invoked using the ExecuteAction method and the
action code ddActionViewCodeEditor. To replace it with your own editor, create your own
toolbar/menu item and use the ActiveReport.Script, Section.Script properties to get/set the script.
The scripting language can be set using the ActiveReport.ScriptLanguage property.

Controls Toolbox
The toolbox contains the controls that can be placed on a section. You can create your own
toolbox toolbar and use the following properties and methods to interface with the designer:

Toolboxltem property: Setting the ToolboxItem property initiates the control-add mode using the
ProgID set to the property. The user will use the rubber band to select the area of the control.
Once the area is selected, the designer will add the control specified by ProgID and end the add
mode by setting Toolboxltem to an empty string.

ValidateChange Event: This event fires after any changes are made to the report layout. It
allows you to control what the user can or cannot do in the designer control. Within the event
code, you can cancel the layout change and revert it back to it's original state.

LayoutChanged Event: After the layout change (control addition, deletion) is validated, this event
will fire with changeType=ddLCControlAdd to notify the application that a new control has been
added.

Alerts and Error Messages
ActiveReports runtime designer allows you to intercept runtime errors and alert messages and
present the user with custom notification Ul. For each error or alert message, ActiveReport

Designer control fires an Error or Alert event with the message id and string and gives you the
option to cancel the internal display when you handle the messages.

Using Runtime Designer Control
Adding Runtime Designer to Visual Basic

Adding Runtime Designer to your Project
Working with the Designer at Runtime

Saving and Loading Report Layouts

Using the Designer Events

Using Scripting

Custom Toolbars and Menus

o Deployment and Distribution

Adding Runtime Designer to Visual Basic
The end-user designer is an ActiveX control. The following steps describe how to include it in the
Visual Basic IDE:

1. Start Visual Basic.
2. Choose Project > Components (Ctrl-T).

x

Controls | Designersl |hzertable Dbiectsl

[cdlg =]
[Ceic 1.0 Type Library

[Closetfindow OLE Contral module _I
[J Contents GLE Contral module

[]cssEdP

[JData Dynamics ActiveReports

I aka Dynamics ActiveReports FunTime Designe
[[]raka Dynamics ctiveReports Viewer 2,0
[[]raka Dynamics Property ListBox

[JOHTML Edit Cantral For IES

] DiffMergect] Activel Conkrol module

[] Direckanimation Library |

[DiscoveryEngineCtrl 1.0 Type Library vl Sl
1] s [Selected Items Only

OO0 o000 Oo

—[Data Dynamics ActiveReporks RunTime Designer

Location: i\, \SCTIYEREPORTS PROMARDESFROZ.DLL

0k I Cancel | Apply |

1.
3. Choose Data Dynamics ActiveReports Runtime Designer.

Note: If the runtime designer entry does not appear in the list, make sure that “Selected Items
Only is not checked. If it still does not appear, make sure ARdespro2.dll is registered by running
regsvr32 on ARdespro2.dll.

4. Click OK to close the dialog box.

4

5. The runtime designer icon 24 should appear in the toolbox.
Adding Runtime Designer to your Project

1. Click on the runtime designer icon %2 in the toolbox.
2. Place the control on the form (shown below) and size it accordingly.

| e Fumet vew | OS] 4 SR HSE || e B0 .
| ; s e
o B e e ot .
A ! MairFapol _!?ipwm -
da| T Peosens |°
4 = Dea |
abl # = PagFoakr | of 5 Dl
L :
L) :
o ;
o !
H 1
E]
* —
= -m:llhpﬁm
m
£
il
&
3
4
of
|] o

The runtime designer’s appearance is the same as the ActiveReports ActiveX designer, but the
end user will not have direct access to the reporting events in Visual Basic. Instead, the user will
use VBScript or JScript to handle the reporting events as needed. The runtime designer includes
a syntax-highlighting editor for both languages.

The following sample demonstrates adding the runtime designer to a Visual Basic project and
using ActiveReport’s viewer control to view reports designed at runtime.

2. Start a new Visual Basic standard EXE project.
3. Select the following components from Visual Basic’s components list:
Data Dynamics ActiveReports Runtime Designer
Data Dynamics ActiveReports Viewer 2.0
Microsoft Tabbed Dialog Control
4, Add the following references from Visual Basic's reference list:
Data Dynamics ActiveReports 2.0
5. Select Forml and set its properties as follows:

Name frmMain
Caption Simple Designer Project
Height 9465

Width 11295

10.

11.

12.

13. Add the following code to the Form_Load event:

Add a SSTab control to frmMain and set its properties as follows:

Height 9015
Left 0
Tabs 2
Top 0
Width 11175

Right-click on SSTab1 and select properties.
Set the TabCaption for TabO to Runtime Designer.
Set the TabCaption for Tabl to Report Preview and select OK to close the tab control’'s
property page.
Add the runtime designer to Tab0 and set its properties as follows:
Name ard

Height 8415
Left 120
Top 480
Width 10935
Add the viewer control to Tabl and set its properties as follows:
Name arv
Height 8535
Left 120
Top 360
Width 10935
frmMain should look like this:
=imi]
P Tams Dojagaes Flapxi Prrwa
e = S S e
IE ‘ = s mlEy B S e A
—H T el et N E L e e e TR e e L TR e [P
- [2
ol = E;'::m |5 sl
F ;
B :
S 3
o :.
5 s
B
%
=1 |) e
m|m
k-
IE /|
s
&t
ﬂ.
&

Dimrpt As DDActiveReports2. Acti veReport

6

Private Sub Form Load()
'Set active Tab to the designer
SSTabl. Tab = 0
Set rpt = New ActiveReport
"Activate all the tool bars
ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFornmat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard

ard. Tool bar sAccessi bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFor mat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard
End Sub

Note: When working with the designer, the toolbars cannot be customized. The only available
options are ToolbarsVisible and ToolbarsAccessible. If the project requires custom toolbars, a
third party toolbar control will need to be substituted for the runtime designer’s toolbars.

14. Add the following code to the SSTabl_Click event:
Private Sub SSTabl Click(PreviousTab As | nteger)
Sel ect Case PreviousTab

Case Is = 0
prepPrevi ew
Case Is =1
prepDesi gner
End Sel ect
End Sub

15. Add the following code to prepare the viewer control and designer when its tab is selected:
Private Sub prepPreview()
On Error GoTo errHndl
'Must be used to wites the designer's |ayout
'to the report so it can be previ ewed.
ard. SaveToObj ect rpt
rpt. Restart
"Run the new report
rpt. Run Fal se
'Add the report to the veiwer
Set arv. Report Source = rpt
Exit Sub

errHndl :
MsgBox "Error Previewi ng the Report: " & Err.Number & " " & Err.Description
End Sub

Private Sub prepDesigner ()
On Error GoTo err Hndl

I f Not arv.ReportSource |s Nothing Then
arv. Report Sour ce. Cancel
Set arv. Report Source = Not hi ng

End If

Exit Sub
errHndl :

MsgBox "Error in Design Preview. " & Err.Nunmber & " " & Err.Description
End Sub

Note: SaveToObject must be used to save the changes made in the runtime designer to an
ActiveReport report object. You should always use that object to run and preview the report. Do
NOT use the designer's Report property to run and preview the report.

1. Save and run the project.

2. While the project is running, continue on to the next sample for a demonstration on using the
designer at runtime.

Working with the Designer at Runtime

This sample demonstrates the fundamentals of using the runtime designer at runtime. The

simple report created in this sample will be used to demonstrate more advanced features later on

in the manual. At runtime, the designer functions similarly to the ActiveX designer, but does not

allow access to the report events or code.

1. Start by running the sample project created above.
2. Place an ADO data control in the designer’s detail section.
3. Connect to Nwind.mdb (see chapter 3 in the standard edition user’s guide).

Note: The samples in this manual use the NorthWind database included with Microsoft Visual
Basic.

4, Set the DataControl's source property to the following SQL statement:
SELECT * FROM custoners order by country
5. Right-click on the designer and select insert to add a new GroupHeader/Footer.

6. Click on the new section “GroupHeaderl to select it.
7. Modify the section’s properties as follows:

Name ghOrderGroup
DataField Country
Height 750

8. Click on the new section “GroupFooterl to select it.
9. Modify the section’s properties as follows:

Name gfOrderGroup
Height 270
10. Add a Field control to the ghOrderGroup section and set its properties as follows:
Name txtGroupCountry
DataField Country
Height 360
Left 0
Top 0
Width 4230
Font.Size 12
Font.Bold True
11. Place 4 labels in the ghOrderGroup section and set their properties as follows:
Name IbICustomer IbICity IbICountry IblPostalCode
Caption Customer City Country PostalCode
Height 270 270 270 270

Left 0 2970 5490 7380
Top 450 450 450 450
Width 2880 2430 1800 1800

12. Click and drag the following fields from the fields list into the detail section:
CompanyName, City, Country and PostalCode

13. Set the field’s properties as follows:

Name txtCustomer txtCity txtCountry txtPostalCode
DataField CompanyName City Country PostalCode
Height 270 270 270 270

Left 0 2970 5490 7380

Top 0 0 0 0

Width 2880 2430 1800 1800
Alignment O-Left O-Left O-Left 1-Right

14. Set the detail sections height to 285.
15. The designer should look like this:

Flunlima Doy L Fisrok Prrsisny
|n-um-lm“lm limmadiaa, ||q.q.nr:n| Il-l|1:|:-.;m 2|
= : |ner|——'_sA'*-3.&¢,,¢E |_
—m T R RO N ST SR ;oo Toolica SR
(B[S wopesor | | oo Dbl s
A =1 7% PagaHasde :

&= ghldaiiaup B m
ahl == Dl 4|2 phisaGoe ficistor T
= : Ir;urw- : Flebdl [he#e) DataCorird
[# Oy |l:us-|nrr-ar Gy Counlf| Comwanzd
iy Jrz Connmt Frod =i
= # Pl ompang Hame Gy Caunf| 2 i
| = e Datetiou
= ._: = pﬂrmu .JE A Dafukr
& ; h Iscdtion -1
| |5 PagaFale Bt 0
E J Lk -j
E' W pe 0
[
E T
m Sonce Sabact ® o
Tx
- e 0
o [
&
&
e -
E F

16. Click on the Report Preview tab to run and show the report.

Argenting

Customer Gy Comtry Proslal Code
Rancha grande Eisaras Alnas Argearing 1010
Dicsara A Arhco Lida Eusarme Airas Argening 1010
Cartis Comidas para laear Buame Aimg Arjeniing 1010 = -
Auslria
Customer Gy Combry Prsial Coda

! Ficcok und mehr Sslzhuig Ausinia S0

. Emst Handel Graz Ausma anin

: Belgium

B Custamer Gy Caumtry Prosia Cade

. Whatan Darwir Erustile Ealgiun B-1180

i Suprémae d dices Cherlarmi Balgium BE000

17, L - | o]

18. Switch back to the Runtime Designer tab and follow the next sample to see how the
designer’s layout can be saved.

Saving and Loading Report Layouts

19. Reports can be saved and loaded into the designer using a variety of different methods. The
easiest method is to use the File menu on the designer to Save or Open RPX files
(ActiveReport’'s standard XML formatted report files).

Open/Save From File Menu

20. To save the report created in the previous sample:

Select the File menu.

Select the Save menu option.

Select the project’s directory, set the File name to sample report.rpx and select save.

wn =

10

21.
22.

=

Save i Ia Simple Design and Preview ﬂ 4m |-j€ v

zample report.rp

File: nam: zample report. rps Save I
Save a3 type: IHepl:urt #hL [*.rpx] j Cancel |

Stop the project and restart it so the designer will return to the default setting. To load the
previously created report back into the designer:

Select the File menu.

Select the Open menu option.

Select the sample report.rpx file from the project’s directory and select Open.

Loak jr: Iﬁ Simple Design and Preview ﬂ &= |-j€ v

Filz name: Isample report iy Open I
Files of type: [Feport XML [~1px] hd! Cancel |

[~ Open as iead-only

23.
24. When the RPX file is loaded, the designer will display the previously created report.
Open/Save Through Code

A designer’s layout can be saved and loaded through code by using the following methods:

Saving:

To save a designer layout in code, use the designer’'s SaveToObject method to save the layout to
a report object. Once the layout is saved to the report object, the report object’'s SaveLayout

11

method can be used to save the layout to an RPX file or byte array. Add the following code to the
sample project to save the designer layout whenever the Report Preview tab is selected.

Private Sub prepPreview()
On Error GoTo errHnd
'Wites the designer's |ayout
'to the report so it can be previ ewed
ard. SaveToObj ect rpt
' Saves the report object to the specified style
rpt. SaveLayout App.Path & "\sanple report.rpx", ddSOFile
' Resets report
rpt. Restart
'Run the new report
rpt. Run Fal se
‘"Add the report to the veiwer
Set arv. Report Source = rpt
Exit Sub

errHndl :
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

Save these changes.
Loading:

To load a designer layout in code, use the report object’s Load method to load a specified RPX
file and the designer's LoadFromObiject to read the layout into the designer. Add the following
code to the project to load the report designer when the project starts and whenever the Runtime
Designer tab is selected.

Private Sub Form Load()
'Set active Tab to the designer
SSTabl. Tab = 0
Set rpt = New ActiveReport
"Activate all the tool bars
ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFor mat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard

ard. Tool bar sAccessi bl e = ddTBTool Box + ddTBAl i gnment + ddTBExplorer + _
ddTBFi el ds + ddTBFor mat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard
'Load the saved RPX file into a report object
rpt.LoadLayout App.Path & "\sanple report.rpx"
'Load the report object into the designer
ard. LoadFr onObj ect rpt

End Sub

Private Sub prepDesigner ()
On Error GoTo errHnd

I f Not arv.ReportSource |s Nothing Then
arv. Report Sour ce. Cance

Set arv. Report Source = Not hi ng

End If

‘'Load the saved RPX file into a report object
rpt. LoadLayout App.Path & "\sanple report.rpx"

12

‘Load the report object into the designer
ard. LoadFr omObj ect r pt

Exit Sub
errHndl :

MsgBox "Error in Design Preview. " & Err.Nunmber & " " & Err.Description
End Sub

Save these changes.
Loading DSR (ActiveX Designer) Files

The runtime designer can also load ActiveReport’s ActiveX Designers included within the project.
To demonstrate this capability:

1. Add an ActiveReport ActiveX Designer to the project and set its properties as follows:
Name rptSample

2. From the designer’s File menu, open the previously saved sample report.rpx file. When the
RPX file is opened, the ActiveX designer will have the same report that was developed with
the runtime designer.

3. Modify frmMain’s Form_Load event to load rptSample instead by adding the following code:
Private Sub Form Load()

'Set active Tab to the designer

SSTabl. Tab = 0

Set rpt = New ActiveReport

"Activate all the tool bars

ard. Tool barsVi si bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _

ddTBFi el ds + ddTBFor mat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard

ard. Tool bar sAccessi bl e = ddTBTool Box + ddTBAl i gnnent + ddTBExpl orer + _
ddTBFi el ds + ddTBFor mat + ddTBMenu + ddTBPropertyTool box + ddTBSt andard

'Load the ActiveX designer into the runtine designer
ar d. LoadFr omObj ect rpt Sanpl e

End Sub
Do not save these changes.

Using the Designer Events

The runtime designer uses four main events to control the actions performed by the end user.
These events are LayoutChanged, SelChange, StatusChange and ValidateChange.
LayoutChanged

LayoutChanged fires when the designer’s layout is changed. The event can be used to monitor
changes made to the report layout and update any dependent data such as SQL queries or
custom user interfaces. The following list gives a description for the different layout changes.

Setting Description

ddLCControlMove 0 — A control’s position has changed.
ddLCControlSize 1 — A control's size has changed.
ddLCControlDelete 2 — A control has been deleted.
ddLCSectionSize 3 — A section’s size has changed.

13

ddLCSectionDelete 4 — A section is deleted.
ddLCSectionMove 5 — A section is moved.
ddLCReportSize 6 — The report’s size is changed.
ddLCControlAdd 7 — A new control has been added to
the report.
SelChange

SelChange fires when an item in the designer is selected. The event can be used to identify the
selected item by accessing the designer’s SelectedObjects property.

StatusChange

StatusChange fires for each change in the status of the designer action. Designer actions
represent the commands typically invoked from Ul elements such as toolbars or menus. The
following list gives a description for all of the actions:

Setting Description

ddActionFOpen 1 - File: Open.

ddActionFSave 2 - File: Save.

ddActionFPageSetup 3 - File: Page Setup.

ddActionECut 4 - Edit: Cut.

ddActionEPaste 5 - Edit: Paste.

ddActionECopy 6 - Edit: Copy.

ddActionEUndo 7 - Edit: Undo.

ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionElnsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionElnsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionElnsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionElnsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.

14

ddActionFoAlignCenterIinSec 29 - Format: Align: Center Control in
Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same
width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same
height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same
width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even
vertically.
ddActionFoVSpacelncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even
horizontally.
ddActionFoHSpacelncrease 37 - Format: Increase horizontal
spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal
spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the
foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the
background.
ddActionFoLockControls 41 - Format: Lock controls size and
position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontltalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Underline.

Note: The ExecuteAction method can be used to execute most of the actions above. The items
that cannot be executed with this method are items requiring parameters, such as color, font, size

15

and style.

ValidateChange

ValidateChange fires before an item is moved, sized or deleted. This event can be used to
control the end user’s actions. For instance, this event can be used to prevent the user from
removing or moving an important control.

These events can be demonstrated by adding the following to the sample project:

1. Select the following components from Visual Basic’s components list:
Microsoft Windows Common Controls 6.0

Microsoft Common Dialog Control 6.0

Add a status bar to the bottom of frmMain and change its name to sb.

Add a second panel to the status bar and set its AutoSize property to 1-sbrSpring.
Add a common dialog control to frmMain and set its name to cmDLG.

Add the following main menu item to Visual Basic’'s menu editor:

25. Caption 26. &File

27. Name 28. mFile

agrwbd

6. Add the following submenu item to the File menu:
29. Caption 30. &Exit
31. Name 32. mExit

7. Add the following second main menu item to the menu editor:
33. Caption 34. &Edit
35. Name 36. mEdit

8. Add the following submenu item to the Edit menu:
37. Caption 38. &Font
39. Name 40. mFont

9. Modify the projects code to handle the added menu items:
Private Sub mExit_Click()

Unl oad Me
End Sub

Private Sub mFont _Click()
' Show t he font dialog box
cnDLG. Fl ags = cdl CFBot h
cmDLG. ShowFont

'Updated the selected item(s) with the new font specs

For x = 0 To ard. Sel ect edObj ects. Count - 1
ard. Sel ect edObj ect s(x) . Font. Name = cnDLG. Font Name
ard. Sel ect edObj ects(x). Font. Size = cnDLG Font Si ze
ard. Sel ect edObj ect s(x) . Font. Underl i ne = cnDLG. Font Underl i ne
ard. Sel ect edObj ects(x).Font.ltalic = cnDLG Fontltalic

Next x

End Sub

10. Modify the prepPreview and prepDeisgner subs to handle the menu items:
Private Sub prepPreview()
On Error GoTo errHndl

16

'Wites the designer's |ayout

'to the report so it can be previ ewed.

ard. SaveToObj ect rpt

'Saves the report object to the specified style
rpt. Save App.Path & "\sanple report.rpx", ddSOFile
' Resets report

rpt. Restart

'Run the new report

rpt. Run Fal se

'Add the report to the veiwer

Set arv. Report Source = rpt

‘'Di sable menu itens in preview node
nFi | e. Enabl ed = Fal se
nEdi t . Enabl ed = Fal se

Exi t Sub

err Hndl :
MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

Private Sub prepDesigner ()
On Error GoTo errHndl

I f Not arv.ReportSource |Is Nothing Then
arv. Report Sour ce. Cancel
Set arv. Report Source = Not hing

End |f

‘Load the saved RPX file into a report object
rpt.Load App.Path & "\sanple report.rpx"
‘Load the report object into the designer
ard. LoadFr omObj ect rpt

' Enabl e the menu itens in design node
nFi | e. Enabl ed = True
nEdi t . Enabl ed = True

Exit Sub
err Hndl :

MsgBox "Error in Design Preview. " & Err.Nunmber & " " & Err.Description
End Sub

11. Add the following code to the project to handle each of the above events:

Private Sub ard_Layout Changed(ByVal changedObj ect As Object, ByVal changeType As
DDAct i veReport sDesi gner Ct| . Layout ChangeTypes)

Di m cnv As DDActi veReports2. Canvas

Dimw As Long, h As Long

Di m sLCaption As String

"The follow ng code checks to see if a |able has been added
"If a label is added, it will pronpt the user for a caption
"And set the lable's width and height to fit the caption

"Check if a | abel as been added
I f TypeOf changedObj ect |s DDActiveReports2. Label And changeType = ddLCControl Add Then

17

'Cet a caption for the |abel
sLCaption = | nputBox("Enter a Caption for the Label", "Enter Caption")

"If no caption is given, use the added object's name
If sLCaption = "" Then sLCaption = changedObj ect. Nanme

'Set the added |abel's caption to the given caption
changedObj ect. Capti on = sLCaption

'Use the canvas object to get a width and height for the caption
Set cnv = New DDActi veReports2. Canvas

‘makes sure the canvas is neasures with the sanme font size
cnv. Font = changedObj ect . Font
cnv. Measur eText sLCaption, w, h

' Change the added controls wi dth and hei ght
changedObj ect. Wdth = w
changedObj ect . Hei ght = h

"unl oad the canvas
Set cnv = Not hi ng
End | f

End Sub

Private Sub ard_Sel Change()
Di m sControl As String
'Fol | owi ng code displays the selected |abel or field s nane,
'Top, left, height and wi dth
If ard. Sel ect edObj ects. Count = 1 Then
I f TypeOf ard. Sel ect edObjects(X) |s DDActiveReports2.Field O
TypeOf ard. Sel ect edObj ects(X) |s DDActi veReports2. Label Then

sControl = ard. Sel ect edObj ect s(X). Nane
sControl = sControl & " Top:" & ard. Sel ectedObj ects(X). Top
sControl = sControl & " Left:" & ard. Sel ectedObj ects(X).Left
sControl = sControl & " " & ard. Sel ectedObj ects(X).Height & _
" twips X"
sControl = sControl & ard. Sel ectedObjects(X).Wdth & " tw ps"
End | f
El se
sControl = ""
End If
sb. Panel s(2). Text = sControl
End Sub

Private Sub ard_StatusChange(ByVal action As
DDAct i veReport sDesi gner Ct| . Desi gner Acti onTypes)
Sel ect Case action
Case ddActi onFoFont Name
' Enabl e/ Di sabl e the font menu option
nmFont . Enabl ed = ard. QuerySt at us(ddActi onFoFont Name)
End Sel ect
End Sub

Private Sub ard_Val i dat eChange(ByVal changedObj ect As Object, ByVal changeType As
DDAct i veReport sDesi gner Ct| . Layout ChangeTypes, Cancel As Bool ean)
'The follow ng code prevents the end user from deleting the

18

'Data control
I f TypeNane(changedObj ect) = "DataControl" Then
I f changeType = ddLCControl Del ete Then
MsgBox "You are not allowed to delete the report's data control ",

vbCritical, "Cannot Renove Control"
Cancel = True
End |f
End |f
End Sub

12. Save and run the project.
Using Scripting

When working with RPX files, all necessary report code must be included with the RPX file in the
form of a script. This is because any Visual Basic code used to create the report is not saved into
the RPX file. Also, the end user will need to use an ActiveScripting language to make any type of
programmatic changes to a report.

Note: For a more detailed explanation of scripting, examine chapter 14 in the standard edition
developer’s guide.

ActiveReports provides two different methods to help make scripting easier and more versatile
with Visual Basic. The report object’'s AddCode method allows code to be added, in the form of a
string, at runtime. The AddNameditem method adds functions and subs contained inside the
Visual Basic code to the scripting name space. Continuing with the designer sample, we will use
both methods to demonstrate how each item is set up. Because RPX files are not secure files, it
is highly suggested that all sensitive information be left out of the RPX file. Since the project is
currently using a data control, with the connection string specified, the connection sting will be
visible in the RPX file. It is highly recommended to use AddNamediItem to allow the Visual Basic
project to retrieve the Recordset and pass this to the DataControl. The following demonstrates
how to convert the sample project to take advantage of the AddNameditem method.

Using AddNamedItem
1. Add a class module to the project and set its name to clsFunctions.

Note: When working with AddNameltem, the subs and functions must be wrapped within a class.

2. In Visual Basic’s references list, select the newest Microsoft ActiveX Data Objects Library.
3. Add the following function to clsFunctions:

Publ i ¢ Function get RSet () As ADODB. Recor dset

Dimrs As ADODB. Recor dset

Di m cn As ADODB. Connecti on

Dim cnnString As String

On Error GoTo err Hndl

New ADODB. Connecti on
New ADODB. Recor dset

Set cn
Set rs

' Connect to DB and get recordset

cnnString = "Provider=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ Program Fi | es\ M crosoft
Vi sual St udi o\ VB98\ NW ND. MDB; Per si st Security |nfo=Fal se"

cn. Open cnnString

rs.Open "Select * fromcustonmers order by country", cn

Set getRSet = rs

19

Set rs
Set cn

Not hi ng
Not hi ng

Exit Function

errHndl :
MsgBox "Unable to get recordset: " & Err.Number & ": " & Err.Description
Set rs = Not hi ng
Set cn = Not hi ng

End Function

4. Make the following modifications to the prepViewer sub to make the report object and script
aware of the added class:
Private Sub prepPreview()
On Error GoTo errHndl
'Wites the designer's |ayout
'"to the report so it can be previewed.
ard. SaveToObj ect rpt
' Saves the report object to the specified style
rpt. Save App.Path & "\sanple report.rpx", ddSCFile
' Resets report

"Activeate the Script debugger and refresh the script
rpt. Scri pt Debugger Enabl ed = True
rpt. ResetScripts

Use AddNanmedltem to add the function to the scripting name space
rpt. AddNamedl tem "vbCode", New cl sFuncti ons

rpt. Restart

'Run the new report

rpt. Run Fal se

'Add the report to the veiwer
Set arv. Report Source = rpt

'Di sable menu itens in preview node

nFi |l e. Enabl ed = Fal se

nmEdi t . Enabl ed = Fal se

Exit Sub
err Hndl :

MsgBox "Error Previewi ng the Report: " & Err.Nunber & " " & Err.Description
End Sub

5. Save and run the project.
6. Select DataControll on the designer and clear out the ConnectionString and Source string.

7. Select the Script icon 53 and add the following code to the ActiveReport Document

OnDatalnitialize sub:
Sub OnDatalnitialize
set rpt.datacontrol 1.recordset = vbcode. getrset
End Sub

8. Select the Report Preview tab to use the new function.
Using AddCode

20

1. Add the following code to clsFunctions:

Publ i c Function II|f(Expression, TruePart, Fal sePart)
I'1f = VBA. | I f(Expression, TruePart, Fal sePart)

End Function

Publ i c Function Format (Expressi on, sFormat)
Format = VBA. For mat (Expr essi on, sFor mat)
End Function

2. Add the following code to frmMain:
Private Function Hel perCode() As String
Di m sCode As String
sCode = ""
sCode = sCode & _
"Public Function IIf(expr, exprTrue, exprFalse)" & vbCrLf & _
"If expr Then IIf = exprTrue Else |If = exprFal se" & vbCrLf & _
"End Function”

sCode = sCode & _
"Public Function Format(expr, fnt)" & vbCrLf & _
"Format = vbCode. Format (expr, fm)" & vbCrLf & _
"End Function"
End Function

3. Add the following code to prepPreview to use the AddCode method:
Private Sub prepPreview()
On Error GoTo errHndl

'Wites the designer's |ayout

'to the report so it can be previ ewed.

ard. SaveToObj ect rpt

'Saves the report object to the specified style

rpt. Save App.Path & "\sanple report.rpx", ddSOFile

' Resets report

"Activeate the Script debugger and refresh the script
rpt. Scri pt Debugger Enabl ed = True
rpt. Reset Scri pts

' Add Il f hel per code
r pt . AddCode Hel per Code()

Use AddNanmedltem to add the function to the scripting name space
rpt. AddNamedl tem "vbCode", New cl sFuncti ons

rpt. Restart

'Run the new report

rpt. Run Fal se

'Add the report to the veiwer
Set arv. Report Source = rpt

'Di sable menu itens in preview node
nFi |l e. Enabl ed = Fal se

nEdi t . Enabl ed = Fal se

Exit Sub

err Hndl :

MsgBox "Error Previewi ng the Report: " & Err.Nunmber & " " & Err.Description

21

End Sub

4. Save and run the project.

Note: The samples contained in this section are designed to demonstrate the fundamentals of
using the end user designer. More advanced samples can be found in the sample directory and
in Data Dynamics’ online knowledgebase at http://www.datadynamics.com/kb.

Custom Toolbars and Menus

The runtime designer toolbars and menus cannot be customized during development. You can
control the visibility and accessibility of individual toolbars using ToolbarsVisible and
ToolbarsAccessible properties. You cannot remove any of the tools from the toolbars.

If you need to present your end users with different user interface elements, you should disable
and hide all the toolbars by setting ToolbarsVisible and ToolbarsAccessible to 0 and create your
own toolbars and menus.

StatusChange event and ExecuteAction and QueryStatus methods provide complete control over
the current state of available Ul options. In addition, you can customize the alerts and error
messages by handling the Alert event.

In addition, you can create your own custom or localized object context menus in the
ContextMenuOpen event.

The "Diamond Reports" sample included in your samples directory provides a comprehensive
example for creating custom toolbars and menus.

Included Sample Projects
The ActiveReports Pro installation includes a few specialized sample projects to demonstrate the
different techniques and capabilities available with the professional edition of ActiveReports.

The code behind the sample projects demonstrates many techniques available with the
professional edition. Use these samples along with the following tutorial to help you understand
the use of the various ActiveReports Professional components.

Following is a listing of these sample projects and the features they demonstrate:

Name Description

1 Diamond Reports An advanced project demonstrating the full
possibilities of the runtime designer. Includes
custom toolbars and menus that implement the
functionality of the built-in counterparts.

2 Property List Demonstrates using the property list box.

3 Simple Designer Demonstrates using the runtime designer,
property list box and preview form.

Deployment and Distribution

You need to include the following files on all clients when distributing the ActiveReports pro.

File Name Description

Arpro2.DLL The Reporting Engine.

ARVIEW2.0cx Only if you are using our ActiveX Viewer.
ARdespro2.dll Only if you are using the end-user designer.

22

PDFExpt.DLL PDF Export Filter (when using PDF exporting).

RTFExpt.DLL RTF Export Filter (when using RTF exporting).
ExclExpt.DLL Excel Export Filter (when using Excel exporting).
TextExpt.DLL Text Export Filter (when using Text exporting).
HTMLExpt.DLL HTML Export Filter (when using HTML exporting).
TiffExpt.dll Tiff Export Filter (when using Tiff exporting).
WebCache.dll Only if you are using the WebCache service.

Web Server Distribution

To serve reports to clients in a web environment, your web server should have arview2.cab if the
project uses the ActiveReports Viewer Control and arpro2.cab if the project uses the end user
designer control. You should also copy and register any export DLLs as needed.

WebhCache Service and ISAPI DLL

0 Introduction

o Installation

o Deployment

0 Using the WebCache Service

Introduction

The WebCache service and ISAPI DLL are used to manage report output on web servers running
Microsoft® Internet Information Servers. The caching service is a COM component that runs as
a service on the web server and caches the report's output. The ISAPI DLL receives requests for
cache items, retrieves the items from the caching service and delivers them to the client
browsers.

Installation
The setup program will automatically install WebCache.dll and WebCacheService.exe to your
machine. The service defaults will be set to use the system account and automatic startup.

Deployment
To deploy the WebCacheService, you can add the WebCacheService.exe file to your setup
project as a service or manually register the service using:

WebCacheServi ce. exe - RegServer —Service
To uninstall, stop the service using the Control Panel / Administrative Tools / Services tool and
then use:

WebCacheSer vi ce. exe -UnregServer

Note: If you are using Wise InstallMaster, don't use the service installation feature. Instead, add
the following commands to your install script:

Execut e Program %0OCXPATHYW WebCacheServi ce. exe - Regi ster Server -Service
Add “Execute path: %OCXPATH% WebCacheServi ce. exe —UnregServer to
| NSTALL. LOG

To configure the number of threads that the WebCacheService creates on startup, set the Start
Parameters /Threads=NumberOfThreads on the general property page of the service (Control
Panel / Services).

23

Using the WebCache Service

The WebCache service can be utilized using either of the following methods:

1

CacheContent method allows you to cache any type of content including report output (RDF
files) and export filters byte array output. The CacheContent method specifies the content
type and the ISAPI filter will serve the cached items with the content and header specified in
this method.

Excel and PDF Export Filters expose an ExportWebCache method that allows a direct export
into the WebCache service objects and returns the proper cache item ids to redirect the client
browser.

24

Developers Reference

0 ActiveReports Runtime Designer
0 WebCache Service Objects
o0 Property List Objects

ActiveReports Runtime Designer
0 ARDesigner Control
0 Selection Object

ARDesigner

Name Type Description

GridSnap Property Determines whether the controls should
be snapped to the grid points.

GridVisible Property Determines whether the drawing grid
should be visible.

GridX Property Determines how coarse the designer
grid should be.

GridY Property Determines how coarse the designer
grid should be.

IsDirty Property Returns whether report has been
modified since last layout was loaded or
initialized.

Locked Property Specifies whether the controls are
locked in place.

Report Property Returns a reference to the designer's
report object.

RulerUnits Property Sets or returns ruler units (Inches,
Centimeters).

SelectedObjects Property Returns collection of selected objects.

ToolbarsAccessible | Property Bit flags for each toolbar to determine
whether a toolbars is accessible by the
end user.

ToolbarsVisible Property Bit flags for each toolbar to determine
whether a toolbar is visible.

Toolboxltem Property Sets or returns PROGID of active
toolbox item.

ExecuteAction Method Executes a specified designer
command.

obj ect . Execut eAction(acti on As
Desi gner Acti onTypes)

LoadFromObject Method Reads the layout from a report object
into designer control.

obj ect . LoadFr omObj ect (Report As
| Acti veReport)

NewLayout Method Discards the current report layout and

25

creates a new blank layout.
obj ect . NewLayout ()

QueryStatus Method Queries the designer for the status of
one or more commands.
obj ect. QueryStatus(action As
Desi gner Acti onTypes)
SaveToObject Method Write the layout from the designer to a
report object.
obj ect. SaveToObj ect (Report As
| Acti veReport)
Alert Event Fires when an alert requesting user
intervention is about to be displayed.
ContextMenuOpen Event Fires before a context menu is opened.
Error Event Fires when an error occurs in the
designer component.
LayoutChanged Event Fires when the report layout is changed.
SelChange Event Fires when selection changes.
StatusChange Event Fires for each change in the status of
the designer actions.
ValidateChange Event Fires before an item is moved, sized or

deleted.

GridSnap

Determines whether the controls should be snapped to the grid points.

Syntax

obj ect. GridSnap [= val ue]
The GridSnap property syntax has the following parts:

Part
object
value

Settings

The settings for value are

Setting
True
False

Data Type
Boolean

Remarks
Default value = True

Description
A valid ARDesigner object
A Boolean value.

Description
Default - The controls are snapped to the grid points.
The controls can be sized and positioned freely.

26

GridVisible

Determines whether the drawing grid should be visible.

Syntax
obj ect. GridVisible [= val ue]
The GridVisible property syntax has the following parts

Part Description

object A valid ARDesigner object
value A Boolean value.

Settings

The settings for value are

Setting Description

True Shows the grid in the designer.
False Hides the grid in the designer.
Data Type

Boolean

Remarks

Default value = True

GridX

Determines how coarse the designer grid should be.

Syntax
obj ect. GridX [= val ue]
The GridX property syntax has the following parts

Part Description

object A valid ARDesigner object

value An Integer value that represents the number of horizontal grid
points per ruler unit.

Data Type

Integer

Remarks

Default value = 16

GridY

27

Determines how coarse the designer grid should be.

Syntax
obj ect. GridY [= val ue]
The GridY property syntax has the following parts

Part Description

object A valid ARDesigner object

value An Integer value that represents the number of vertical grid
points per ruler unit.

Data Type

Integer

Remarks

Default value = 16

IsDirty

Returns whether report has been modified since last layout was loaded or initialized.

Syntax
object.IsDirty [= val ue]
The IsDirty property syntax has the following parts

Part Description

object A valid ARDesigner object

value A Boolean value.

Settings

The settings for value are

Setting Description

True The report layout has been modified.
False The report layout has not been modified.
Data Type

Boolean

Example

Private Sub Form QueryUnl oad(Cancel As Integer, UnloadMode As I|nteger)
I f ARDesignerl.IsDirty Then
' Ask if report should be saved
Dimi Save As |nteger
i Save = MsgBox("Save changes to the report?"

vbYesNoCancel , "Save")
Sel ect Case i Save
Case vbYes
Save the Report
Fi | eSave

28

Cancel =0

Case vbNo
' Continue wthout saving
Cancel =0

Case vbCance
Cancel Unl oad

Cancel =1
End Sel ect
End | f
End Sub
Locked

Specifies whether the controls are locked in place.

Syntax
obj ect. Locked [= val ue]
The Locked property syntax has the following parts

Part Description

object A valid ARDesigner object

value A Boolean value.

Settings

The settings for value are

Setting Description

True The controls cannot be moved or sized.
False The controls can be moved or sized.
Data Type

Boolean

Example

If the controls are | ocked mark the menu item as checked
mulLocked. Checked = ARDesi gner 1. Locked

Remarks
Default value = False

Report

Returns a reference to the designer's report object.

Syntax
obj ect. Report [= val ue]
The Report property syntax has the following parts

Part Description
object A valid ARDesigner object
value An ActiveReport reference.

29

Data Type
IActiveReport

Example

Add a data control to the designer using the Report object
Dimctl As DataControl
Wt h ARDesigner. Report. Sections("Detail").Controls

Set ctl = .Add("DDActiveReports2. DataControl ")
ctl.Nane = "dc"
ctl.Top = 0: ctl.Left =0
ctl.Tag = "'
End Wth
Remarks

This report object is used to gain access to the layout and controls properties. Do not use it to
run the report and preview it. Use a separate ActiveReport variable and save the layout to it
using the SaveToObject method.

RulerUnits
Sets or returns ruler units (Inches, Centimeters).

Syntax
obj ect.RulerUnits [= val ue]
The RulerUnits property syntax has the following parts:

Part Description

object A valid ARDesigner object
value A valid ddRulerUnits setting.
Settings

The settings for value are

Setting Description

ddRulerUus 0 - Inches.
ddRulerMetric 1 - Centimeters.

Data Type

ddRulerUnits

Remarks

Default value = 0 - US Setting.

SelectedObjects

Returns collection of selected objects.

Syntax
Set val ue = object. Sel ect edObj ects
The SelectedObjects property syntax has the following parts:

30

Part

object
value

Data Type
Selection
Example

Description

A valid ARDesigner object
A Selection object.

Private Sub ARDEsi gner1_Sel Change()

Dim | Sel As Long
Di m arr Sel ()

plist is a custom PropertyLi st control

plist.Clear

When sel ecti on changes,

property list

add sel ected objects to the custom

| f ARDesignerl. Sel ect edObj ects. Count > 0 Then
ReDi m arr Sel (ARDesi gner 1. Sel ect edObj ects. Count - 1)
For |1Sel = 0 To ARDesi gnerl. Sel ect edObj ects. Count - 1

Set arrSel (I Sel)

Next

= ARDesi gner 1. Sel ect edObj ect s(| Sel)

plist. Sel ect Obj ects arr Sel

End |f
End Sub

ToolbarsAccessible
Bit flags for each toolbar to determine whether a toolbar is accessible by the end user.

Syntax

obj ect . Tool bar sAccessi bl e [= val ue]
The ToolbarsAccessible property syntax has the following parts:

Part
object
value

Settings
The settings for value are

Setting

ddTBMenu
ddTBToolBox
ddTBStandard
ddTBAlignment
ddTBFormat
ddTBExplorer
ddTBFields
ddTBPropertyToolbox

Data Type
Toolbarldentifiers

Description
A valid ARDesigner object
A Toolbarldentifiers setting.

Description

1 - Main menu toolbar.

2 - Controls toolbox.

4 - Standard toolbar.

8 - Alignment toolbar.

16 - Format toolbar.

32 - Report explorer toolbar.
64 - Fields list toolbar.

128 - Property toolbox.

31

Example

Private Sub Form Load()

Di sabl e and hide the built in tool bars
ARDesi gner 1. Tool bar sAccessi ble = 0
ARDesi gner 1. Tool barsVisible = 0

End Sub

Remarks

The customization option for the toolbars is available only when all toolbars are accessible. If any
of the toolbars are not accessible, the built-in customization will be disabled.

ToolbarsVisible
Bit flags for each toolbar to determine whether a toolbar is visible. The end user can show/hide
the toolbars from the toolbar's context menu.

Syntax
obj ect . Tool barsVi si bl e [= val ue]
The ToolbarsVisible property syntax has the following parts

Part Description

object A valid ARDesigner object
value A Toolbarldentifiers setting.
Settings

The settings for value are

Setting Description

ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.
Data Type

Toolbarldentifiers

Example

Private Sub Form Load()

Di sabl e and hide the built in tool bars
ARDesi gner 1. Tool bar sAccessible = 0
ARDesi gner 1. Tool barsVisible = 0

End Sub

Toolboxltem
Sets or returns PROGID of active toolbox item. Set to empty to end control mode.

32

Syntax
obj ect . Tool Boxltem [= val ue]
The Toolboxltem property syntax has the following parts

Part Description

object A valid ARDesigner object
value A String value.

Data Type

String

Example

Private Sub tbTool box_ButtonClick(ByVal Button As MSConctl Li b. Button)
Sel ect Case Button. key
Case "tbxSel ect": ARDesignerl. Tool Boxltem = ""
Case "tbxLabel": ARDesignerl. Tool Boxltem = "DDActi veReports2. Label "
Case "tbxField": ARDesignerl. Tool Boxltem = "DDActi veReports2. Field"
Case "t bxCheckbox": ARDesigner1. Tool Boxltem = "DDActi veReports2. Checkbox"
Case "tbxlmage": ARDesignerl. Tool Boxltem = "DDActi veReports2. | mage"
Case "tbxLine": ARDesignerl. Tool Boxltem = "DDActi veReports2.Line"
Case "tbxShape": ARDesigner1. Tool Boxltem = "DDActi veReports2. Shape"
Case "tbxRichedit": ARDesignerl. Tool Boxltem = "DDActi veReports2. Ri chEdit"
Case "tbxFrame": ARDesignerl. Tool Boxltem = "DDActi veReports2. Franme"
Case "tbxSubreport": ARDesignerl. Tool Boxltem = "DDActi veReports2. Subreport™
Case "t bxPageBreak": ARDesignerl. Tool Boxltem = "DDActi veReports2. PageBr eak"
Case "tbxOLE": ARDesignerl1. Tool Boxltem = "DDActi veReports2. OLE"
Case "tbxBarcode": ARDesi gnerl. Tool Boxltem = "DDActi veReports2. Bar code"
End Sel ect
End Sub

Remarks
This property is used to implement a custom toolbox toolbar.

ExecuteAction

Executes a specified designer command. You can use this method when implementing a custom

toolbar or menu. This method will perform the report actions in response to the toolbar or menu
items.

Syntax

obj ect . Execut eActi on(acti on As Desi gner Acti onTypes)
The ExecuteAction method syntax has the following parts:

Part Description

object An expression evaluating to an object of
type ARDesigner.

action DesignerActionTypes - A valid action
setting.

Settings

The settings for action are

33

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.

ddActionEDeleteSection

9 - Edit: Delete Section.

ddActionElnsertReportHF

10 - Edit: Insert Report Header/Footer.

ddActionElnsertPageHF

11 - Edit: Insert Page Header/Footer.

ddActionEInsertGroupHF

12 - Edit: Insert Group Header/Footer.

ddActionEReorderGroups

13 - Edit: Reorder Groups.

ddActionElnsertField

14 - Edit: Insert Field.

ddActionViewExplorer

15 - View: Report Explorer.

ddActionViewFieldsList

16 - View: Fields List.

ddActionViewPropertyList

17 - View: Property Listbox.

ddActionViewGrid

18 - View: Grid.

ddActionViewSnapToGrid

19 - View: Snap to grid.

ddActionViewFullScreen

20 - View: Full screen.

ddActionViewCodeEditor

21 - View: Script Code Editor.

ddActionFoAlignLefts

22 - Format: Align Control Lefts.

ddActionFoAlignRights

23 - Format: Align Control Rights.

ddActionFoAlignCenters

24 - Format: Align Control Centers.

ddActionFoAlignTops

25 - Format: Align Control Tops.

ddActionFoAlignMiddles

26 - Format: Align Control Middles.

ddActionFoAlignBottoms

27 - Format: Align Control Bottoms.

ddActionFoAlignToGrid

28 - Format: Align to Controls Grid.

ddActionFoAlignCenterinSec

29 - Format: Align : Center Control in Section.

ddActionFoSizeSameWidth

30 - Format: Size controls to the same width.

ddActionFoSizeSameHeight

31 - Format: Size controls to the same height.

ddActionFoSizeSameBoth

32 - Format: Size controls to the same width and
height.

ddActionFoVSpaceEqual

33 - Format: Space controls even vertically.

ddActionFoVSpacelncrease

34 - Format: Increase vertical spacing.

ddActionFoVSpaceDecrease

35 - Format: Decrease vertical spacing.

ddActionFoHSpaceEqual

36 - Format: Space controls even horizontally.

ddActionFoHSpacelncrease

37 - Format: Increase horizontal spacing.

ddActionFoHSpaceDecrease

38 - Format: Decrease horizontal spacing.

ddActionFoOrderBringToFront

39 - Format: Bring control to the foreground.

ddActionFoOrderSendToBack

40 - Format: Send control to the background.

ddActionFoLockControls

41 - Format: Lock controls size and position.

34

ddActionFoFontBold 45 - Format: bold.
ddActionFoFontltalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.
Example

Edit > Cut nmenu item Private Sub m ECut _Click()
ARDesi gner 1. Execut eActi on ddActi onECut
End Sub

Remarks

Font and color actions are not supported in the ExecuteAction method. In order to set font and
color properties, you should directly access the selected object and set those properties.

GetSectionFromPoint

Returns the section name at a specified point and converts the point coordinates to section
relative coordinates. Returns empty when the specified point is not within a section area.

Syntax
[secti onNane =]object. Get Secti onFromPoi nt(x As Single, y As Single)
The GetSectionFromPoint method syntax has the following parts:

Part Description
object A valid ARDesigner object.
X,y Single - Specifies the point coordinates of which to retrieve the

section name. The values are converted to section relative
coordinates on return from the method.

sectionName String - Returns the section name that is at the specified point
coordinates.

Return
String

Example

Private deltax As Single, deltay As Single
This code inplenments a | abel Drag Drop on the designer control.
It adds a new control at the dropped | ocation.
Private Sub ard_DragDrop(Source As Control, X As Single, Y As Single)
Dim sSec As String
Di m secTarget As Obj ect
Dimctl As Object

35

X = X - deltax
Y =Y - deltay
sSec = ard. Get Secti onFronPoi nt (X, Y)
If sSec <> "" Then
Set secTarget = ard. Report. Secti ons(sSec)
Set ctl = secTarget. Controls. Add("DDActi veReports2. Label ")

ctl.Left = X

ctl.Top = Y

ctl.Wdth = | bl Drag. Wdth

ctl.Height = I bl Drag. Hei ght

ctl.BackStyle = 1

ctl.BackCol or = &HCOCOFF

If (ctl.Left + ctl.Wdth) > ard. Report.PrintWdth Then
ard. Report.PrintWdth = ctl.Left + ctl.Wdth

End | f

If (ctl.Top + ctl.Height) > secTarget. Hei ght Then
secTarget. Hei ght = ctl.Top + ctl. Hei ght

End | f

End I f
End Sub

Private Sub ard_DragOver(Source As Control, X As Single, Y As Single, State As |nteger)
Dim sSec As String

X = X - deltax

Y =Y - deltay

sSec = ard. Get Secti onFronPoi nt (X, Y)
| stState. Addltem sSec & " : " & Str$(X) & "," & Str$(v)
End Sub

Remarks
This method is used when adding controls into specific sections using drag and drop events.

LoadFromObject

Reads the layout from a report object into designer control.

Syntax

obj ect . LoadFr onObj ect (Report As | ActiveReport)
The LoadFromObject method syntax has the following parts:

Part Description

object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

Example

Load a report layout file into an activereport instance
' then load it into the designer control.
Alternatively, you can use the Load nmethod of the deisgner's Report property
Dim rpt As ActiveReport
Set rpt = New ActiveReport
rpt.Load App.Path & "\test.rpx"
ARDesi gner 1. LoadFr omObj ect (r pt)

36

NewLayout
Discards the current report layout and creates a new blank layout.

Syntax
obj ect . NewLayout ()
The NewLayout method syntax has the following parts:

Part Description
object An expression evaluating to an object of type ARDesigner.
Example

File > New, Menu Item
Private Sub m FNew_Click()
ARDesi gnher 1. NewLayout

End Sub

QueryStatus

Queries the object for the status of one or more commands.

Syntax

obj ect. QueryStatus(acti on As Desi gner Acti onTypes)
The QueryStatus method syntax has the following parts:

Part Description

object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes
Settings

The settings for action are

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.

ddActionElnsertReportHF

10 - Edit: Insert Report Header/Footer.

ddActionElnsertPageHF

11 - Edit: Insert Page Header/Footer.

ddActionElnsertGroupHF

12 - Edit: Insert Group Header/Footer.

ddActionEReorderGroups

13 - Edit: Reorder Groups.

ddActionElnsertField

14 - Edit: Insert Field.

ddActionViewExplorer

15 - View: Report Explorer.

ddActionViewFieldsList

16 - View: Fields List.

37

ddActionViewPropertyList

17 - View: Property Listbox.

ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.

ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterinSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and
height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpacelncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpacelncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontltalic 46 - Format: ltalic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.

38

Example

' Update edit menu items on status change.
Private Sub ARDesi gner1_ St atusChange(ByVal action As
DDAct i veReport sDesi gner Ct| . Desi gner Acti onTypes)
Sel ect Case action
Case ddActi onECopy
m ECopy. Enabl ed = ((ARDesi gner 1. Quer ySt at us(ddActi onECopy) And ddSt at Enabl ed)
ddSt at Enabl ed)
m ECopy. Checked = ((ARDesi gner 1. Quer ySt at us(ddActi onECopy) And ddSt at Checked)
ddSt at Checked)
' Case
End Sel ect
End Sub

SaveToObject

Write the layout from the designer to a report object.

Syntax
obj ect . SaveToObj ect (Report As | Acti veReport)
The SaveToObject method syntax has the following parts:

Part Description

object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

Example

nmodul e vari abl e
Dim rpt As DDActiveReports2. Acti veReport

Private Sub Previ ewReport ()
On Error GoTo ehPrevi ewReport
ard. SaveToObj ect rpt
rpt. Restart
rpt. Run Fal se
Set arv. Report Source = rpt
Exit Sub

ehPrevi ewReport :
MsgBox Str(Err.Nunmber) & " - " & Err.Description, vbOKOnly, "Error: PreviewReport"
End Sub

Remarks

You must use the SaveToObject to save the report designer to an ActiveReport instance before
running the report.

Alert

Fires before an alert message box requiring user intervention is displayed. You can use this
event to replace the built-in message boxes with your own.

Syntax
Sub object_Alert(id As Integer, pronpt As String, buttons As Long, result)

39

The Alert event syntax has the following parts:

Part Description
id Integer - Specifies the alert message id.
prompt String - Specifies the message string to be displayed.

buttons

Long - Specifies the number and style of buttons to be

displayed.

result

Long - used to set the return value of the event when the alert

is handled by the event.

Settings

The id parameter has the following settings:

ddARAlertControlNotRegistered

1 - Report contains a control that is not registered on
the client machine.

ddARAlertDataSource 2 - Data source returned error when updating property
sheet.

ddARAlertDAOSettings 3 - DAO data control settings are incorrect.

ddARAlertDAO 4 - DAO returned error when opening the connection
or recordset.

ddARAlertFieldList 5 - A database error occurred when attempting to

refresh the field list window.

ddARAlertinvalidSectionForDataControl

6 - A data control cannot be added to a non-detail
section.

ddARAlertDataControlAlreadyEXxists

7 - User tried to drop more than one data control into
the detail section.

ddARAlertControlCreateFailed

8 - The ActiveX control can't be hosted in
ActiveReports

ddARAlertAB2DLLMissing

9 - AB2DLL.DLL toolbars library is missing.

ddARAlertCantUndoDelete

10 - The edit/delete operation can't be undone

ddARAlertDeleteFailed

11 - The edit/delete operation failed.

ddARAlertEditCutFailed

12 - The edit/cut operation failed.

ddARAlertEditCopyFailed

13 - The edit/copy operation failed.

ddARAlertDuplicateStyleName

14 - User tried to create a style that already exists.

ddAlertCantDeleteStyle 15 - User tried to delete the normal style.
ddAlertRTF 16 - RTF control alert.
ddARAlertRTFDeleteField 17 - Confirm deleting an RTF merge field.

ddARAlertCantDeleteDetailSection

18 - Detail section cannot be deleted.

ddARAlertDeleteSectionPrompt

19 - Confirm deleting a section.

ddARAlertSavelayoutFailed

20 - Unable to save the report layout.

Example

Private Sub ard_Alert(ByVal id As Integer, ByVal pronpt As String, ByVal buttons As Long,

result As Variant)

If id = ddARAl ert Cont r ol Not Regi st ered Then
MsgBox "Report contains an unregistered control." & _
"Contact 999-999-9999 with the following information " & _

20

vbCrif & Str(id) & "
=0

result
End |f
End Sub

& pronpt

ContextMenuOpen

Fires before a context menu is opened.

Syntax

obj ect _Cont ext MenuOpen(sour ceObj ect As Obj ect,
menuType As Cont ext MenuTypes,

Cancel As Bool ean)

The ContextMenuOpen event syntax has the following parts:

Part Description

sourceObject Object - A reference to the object that is opening the menu.

menuType ContextMenuTypes - Specifies the type of menu that will be
opened for this sourceObject.

Cancel Boolean - determines whether the default menu handler
should be cancelled. This parameter should be set to True to
disable or replace built in context menus.

Settings

The settings for menuType are

Setting Description

ddCMSection 0 - Section context menu.

ddCMControl 1 - Control context menu.

ddCMReport 2 - Report object context menu.

ddCMRTFEditMode

3 - RichEdit context menu.

Example

Exanpl e i npl ement ati on of the Context MenuOpen event

The mmuReport, mnuControl,

muSecti on and muRi chEdi t

' are nmenu items created using VB's Menu editor

You can use the sourceObject

your custom menu options

Private Sub ARDesi gner1_ Cont ext MenuOpen(ByVal
DDAct i veReport sDesi gner Ct| . Cont ext MenuTypes, Cancel As Bool ean)

Sel ect Case menuType
Case ddCMContr ol

PopupMenu muCont r ol

Case ddCMRreport
PopupMenu mmuReport
Case ddCMsecti on

PopupMenu mmuSecti on

Case ddCMRi chedit

PopupMenu mmuRi chEdi t

End Sel ect
Cancel = True
End Sub

properties to enabl e/ di sabl e

sourceChj ect As (bj ect,

menuType As

41

Error
Fires when an error occurs in the designer component. This event allows you to create your own
error handler and display localized error message boxes.

Syntax

obj ect _Error ((Number As |Integer, Description As String, Scode As Long, Source As String,
Hel pFile As String, HelpContext As Long, Cancel Di spl ay As Bool ean))

The Error event syntax has the following parts

Part Description

object An expression evaluating to an object of type ARDesigner.
Number Integer - Error number

Description String - Error description.

Scode Long - Result code.

Source String - Source of the error if applicable.

HelpFile String - Help file

HelpContext Long - Error context id, in the help file.

CancelDisplay Boolean - Set CancelDisplay = True to cancel the built in error

dialog and replace it with your own.

Example

Private Sub ARDesignerl Error(ByVal Number As |Integer, Description As String,
ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String,
ByVal Hel pContext As Long, Cancel Di splay As Bool ean)
App. LogEvent Format (Now, "mm dd/yyyy Hh: Nn") & Str(Number) & " - " & Description
Cancel Di splay = True
End Sub

LayoutChanged

Fires when the layout is changed. You can use this event to monitor changes to the report layout
and update any dependent data such as SQL queries or custom user interfaces (report explorers,
group sections dialog, etc..).

Syntax

obj ect _Layout Changed(changedObj ect As Obj ect, changeType As Layout ChangeTypes)
The LayoutChanged event syntax has the following parts

Part Description

object An expression evaluating to an object of type ARDesigner.

changedObject Object - a reference to the control or object that caused the
layout change.

changeType LayoutChangeTypes - specifies the type of change.

Settings

The settings for changeType are

Setting Description

ddLCControlMove 0 - A control's position has changed.

42

ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.
Example

Private Sub ARDesi gner1_Layout Changed(changedObj ect As Obj ect,
changeType As Layout ChangeTypes)
' If a group section was added or renmoved then display a grouping dial og
I f changeType = ddLCSecti onAdd Then
I f changedObj ect. Type = ddSTG oupHeader Then
f r mGr oups. Show

End | f
End |If
End Sub
SelChange

Fires when selection changes. You can use the SelectedObjects property to inspect the current
selection.

Syntax
obj ect _Sel Change()

Example

Sel Change event handl er
Pri vate Sub ARDesi gner1_Sel Change()
I f ARDesignerl. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1). Text = ARDesi gner 1. Sel ect edObj ect s(0) . Name
El se
St at usBar 1. Panel s(1). Text = ""
End | f
End Sub

Remarks

This event can be used to update Ul elements such as a property toolbox or status bar in your
custom report designer

StatusChange

This event fires for each change in the status of the designer actions. Designer actions represent
the commands that are typically invoked from Ul elements such as a toolbar or a menu. You can
use the QueryStatus method to check the status of the changed action and update your custom
Ul elements.

Syntax
object_StatusChange(action As DesignerActionTypes)

43

The StatusChange event syntax has the following parts:

Part Description

action DesignerActionTypes - Specifies the action that caused the
change as one of the actions listed below.

Settings

The settings for action are

Setting Description

ddActionFOpen 1 - File: Open.

ddActionFSave 2 - File: Save.

ddActionFPageSetup 3 - File: Page Setup.

ddActionECut 4 - Edit: Cut.

ddActionEPaste 5 - Edit: Paste.

ddActionECopy 6 - Edit: Copy.

ddActionEUndo 7 - Edit: Undo.

ddActionEDelete 8 - Edit: Delete.

ddActionEDeleteSection

9 - Edit: Delete Section.

ddActionElnsertReportHF

10 - Edit: Insert Report Header/Footer.

ddActionElnsertPageHF

11 - Edit: Insert Page Header/Footer.

ddActionEInsertGroupHF

12 - Edit: Insert Group Header/Footer.

ddActionEReorderGroups

13 - Edit: Reorder Groups.

ddActionElnsertField

14 - Edit: Insert Field.

ddActionViewExplorer

15 - View: Report Explorer.

ddActionViewFieldsL ist

16 - View: Fields List.

ddActionViewPropertyList

17 - View: Property Listbox.

ddActionViewGrid

18 - View: Grid.

ddActionViewSnapToGrid

19 - View: Snap to grid.

ddActionViewFullScreen

20 - View: Full screen.

ddActionViewCodeEditor

21 - View: Script Code Editor.

ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterinSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and
height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.

44

ddActionFoVSpacelncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpacelncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.

ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.

ddActionFoFontltalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFolndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline

Example

Update edit nenu items on status change
Private Sub ARDesi gner1_StatusChange(ByVal action As
DDAct i veReport sDesi gner Ct| . Desi gner Acti onTypes)
Sel ect Case action
Case ddActi onECopy
m ECopy. Enabl ed = ((ARDesi gner 1. QuerySt at us(ddActi onECopy) And _
ddSt at Enabl ed) = ddSt at Enabl ed)
m ECopy. Checked = ((ARDesi gner1. QueryStatus(ddActi onECopy) And _
ddSt at Checked) = ddSt at Checked)
End Sel ect
End Sub

ValidateChange

This event is fired before an item is moved, sized or deleted. You can use this event to control
the end user's actions. For example, you can prevent the user from deleting the report's data
control or moving a predefined set of controls that are part of a standard report template.

Syntax
obj ect _Val i dat eChange(control As Object, changeType As Layout ChangeTypes, Cancel As

45

Bool ean)

Parameters
The ValidateChange event syntax has the following parts:

Part Description

object An expression evaluating to an object of type ARDesigner.
control Object

changeType LayoutChangeTypes

Cancel Boolean

Settings

The settings for changeType are

Setting Description

ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.
Example

Private Sub ARDesi gner1_Val i dat eChange(ByVal control As Object, _
ByVal changeType As DDActi veReportsDesi gnerCtl.Layout ChangeTypes
Cancel As Bool ean)

I f changeType = ddLCControl Del ete Then

If control.Name = "DataControl 1" Then
MsgBox "You cannot delete the reports data source."
Cancel = True
End | f
End | f
End Sub
Selection
Name Type Description
Count Method Returns the number of selection objects in the collection.
object.Count
Item Method Returns the object at the selected index.
object.ltem(index)
Count

Returns the number of selected objects in the collection.

Syntax
obj ect . Count ()

Example

46

Sel Change event handl er
Private Sub ARDesi gner1_Sel Change()
| f ARDesi gner 1. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1) . Text = ARDesi gner 1. Sel ect edObj ect s(0) . Name

El se
St atusBar 1. Panel s(1). Text = ""
End | f
End Sub
ltem
Syntax

object.ltem((i ndex As Long))
The Item method syntax has the following parts

Part Description

object An expression evaluating to an object of type Selection.
index Long

Example

Sel Change event handl er
Private Sub ARDesi gner1_Sel Change()
I f ARDesignerl. Sel ect edObj ects. Count = 1 Then
St at usBar 1. Panel s(1). Text = ARDesi gner 1. Sel ect edObj ects.|tem(0). Nanme
El se
St at usBar 1. Panel s(1). Text = ""
End | f
End Sub

WebCache Service Objects
0 WebCache

0 WebCacheltem

0 WebCacheWorkerThread

o WebCacheWorkerThreads

WebCache

Name Type Description

CacheContent Method Adds an item to the WebCache collection.
Cacheltem Method Adds an item to the WebCache collection.
IsCached Method Determines whether a specific item is cached.
Item Method Returns the cached item at the specified index.
Remove Method Removes the cached item at the specified index.
RemoveAll Method Removes all cached items from the service.
Count Property Returns the number of cached item in the service.
CacheContent

Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache
collection.

The Cacheltem Method should only be used when additional header information other than

47

content type needs to be written into the header of the cached item.

Syntax

obj ect . CacheCont ent (Cont ent Type As String, Data As Vari ant)
The CacheContent method syntax has the following parts:

Part Description

object An expression evaluating to an object of type WebCache.
ContentType String

Data Variant

Example 1

'The follow ng exanple perforns the follow ng

'1) Loads an ActiveReport froma presaved XM. file
'2)Runs the report

'3)Exports the report to a byte array in PDF format
'4) Adds the byte array to ActiveReports WebCache so
"that it may be streanmed directly to the browser

' The exanple code is placed in a user defined function.

"A typical scenario would be for this function to be pl aced
'in a COM object and called from an ASP page.

"You could then do an ASP response.redirect to the

"url where the pdf export was cached.

Publ i ¢ Functi on ExportReport() as |ong

Dim rpt As ActiveReport

Di m aWwebCache As WebCache

Di m pdf Expt As Acti veReport sPDFExport . ARExport PDF

Di m PDFByt eAr r ay As Vari ant

Set rpt = New ActiveReport

Set aWebCache = New WebCache

set pdf Expt = New Acti veReportsPDFExport. ARExport PDF

rpt.Load "c:\testing.rpx"

rpt.run

Cal | pdf Expt. Export Stream(rpt.Pages, PDFByteArray)

| WebCachel D = aWebCache. CacheCont ent (" Appl i cati on/ PDF", PDFByt eArray)
Export Report = | WebCachel D ' | WebCachel D can now be used to access the cached pdf file

"i.e.
' ASP Code calling the above function

' di m vWebCachel D

' vWebCachel D = arptserver. Export Report ()

' Response. Redirect "nywebsite/webcache.dll?" & vWebCachelD & "?"
End Function

Cacheltem

48

Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache
collection.

The Cacheltem Method should only be used when additional header information other than
content type needs to be written into the header of the cached item.

Syntax

obj ect. Cachel t em(Header As String, Data As Variant)
The Cacheltem method syntax has the following parts:

Part Description

object An expression evaluating to an object of type WebCache.
Header String - A valid header string to send to the browser client.
Data Variant - cache content.

Example

' The foll owi ng exanple performs the follow ng
'1)Loads an ActiveReport froma presaved XML file
'2)Runs the report

'3)Exports the report to a byte array in PDF format
'4)Adds the byte array to ActiveReports WebCache so
"that it may be streamed directly to the browser

' The exanple code is placed in a user defined function.

"A typical scenario would be for this function to be pl aced
'in a COM object and called from an ASP page.

"You could then do an ASP response.redirect to the

"url where the pdf export was cached.

Publ i ¢ Function ExportReport() as |ong

Di m r pt As ActiveReport
Di m aWwebCache As WebCache
Di m pdf Expt As Acti veReportsPDFExport. ARExport PDF

Di m PDFByt eAr r ay As Vari ant

Set rpt = New ActiveReport

Set aWebCache = New WebCache

Set pdf Expt = New Acti veReport sPDFExport. ARExport PDF

rpt.Load "c:\testing.rpx"

rpt.run

Cal | pdf Expt.ExportStream(rpt. Pages, PDFByteArray)

| WebCachel D = aWebCache. Cachel tem(" Content-type: Application/ PDF", PDFByteArray)
!Export Report = | WebCachel D ' | WebCachel D can now be used to access the cached pdf file

1.e.

49

' ASP Code calling the above function

' di m vWebCachel D

' vWebCachel D = arptserver. Export Report ()

' Response. Redirect "nywebsite/webcache.dll?" & vWebCachelD & "?"
End Functi on

IsCached

Returns a Boolean value telling the developer if a specific item is still cached or not.

Syntax

obj ect.|sCached(ld As String)
The IsCached method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Id String
Example
Checking to see if a webcache id is still cached
Di m bl nl sCached As Bool ean
Di m aWebCache As WebCache

Set aWebCache = New WebCache
bl nl sCached=aWebCache. | sCached("1")

Item
Allows random access to individual nodes within the WebCache collection.

Syntax

object.ltem (I ndex As Variant))
The Item method syntax has the following parts:

Part Description

object An expression evaluating to an object of type WebCache.
Index Variant

Example

' The exanpl e code denobnstrates how to | oop
"through all of the items in the
'webcache col |l ecti on and

print out each itens timeout val ue

'Pl ease Note that | am not using For EACH in the exanple.
' The _NewkEnum property of the webcache coll ection
'"is not supported at this time so you cannot use For Each.

Dim x As |nteger
For x = 0 To aWwbCache. Count - 1

Debug. Print "awebcache.item(" & x & ").tineout = " & aWebCache.|ltem(x). Ti neQut

Next

50

Remove
Removes an element from the WebCache collection using the index of the cached item.

Syntax

obj ect . Renove(l ndex As Vari ant)
The Remove method syntax has the following parts:

Part Description

object An expression evaluating to an object of type WebCache.
Index Variant

Example

"In this exanpl e aWwebCache represents a declared i nstance of the webcache cl ass
'cont ai ni ng cached itens

‘renoves the first cached itemin the webcache coll ection

aWebCache. remove(0)

RemoveAll
Removes all cached items from the WebCache Collection.

Syntax
obj ect . RemoveAl | ()
The RemoveAll method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
Example

"In this exanpl e aWebCache represents a declared instance of the webcache class
'cont ai ni ng cached itens

'"removes all cached itemin the webcache collection

aWebCache. rempveal

Count
Returns the current number of Cached Items in the WebCache Collection - Read Only.

Syntax

[val ue=] obj ect . Count
The Count property syntax has the following parts:

Part Description

object A valid WebCache object
value A Integer value.

Data Type

Integer

51

Example

"In this exanpl e aWwebCache represents a declared i nstance of the webcache cl ass
‘cont ai ning cached itens

di micount as integer

i count = aWebCache. count

WebCacheltem

Name Type Description

Data Property Returns the data of the cached item.

Header Property Returns the header of the cached item.

Id Property Returns the cached items Id that is used by the ISAPI
filter.

Persistence Property Determines when the cached item will be destroyed.

Timeout Property Determines the time in minutes that a cached item will
remain in the cache.

Data

Returns the data of the cached item - Read Only.

Syntax
[val ue =] object. Data
The Data property syntax has the following parts:

Part Description

object A valid WebCacheltem object
value A Variant value.

Data Type

Variant

Example

' Thi s exanpl e dempnstrates how to use the
‘'Data property of the WebCachltem cl ass.

"In the exanple "aWbCache"

is a pre-existing

"variabl e di nensi oned as webcache and it
' has been popul ated with a webcacheitem

Di m aWwebCacheltem As New WebCachel t em
Set aWebCacheltem = aWebCache. | t enm(0)

debug. pri nt

aW\ebCachel t em dat a

Header

Returns the header of the cached item - Read Only.

Syntax

[val ue =] obj ect. Header

The Header property syntax has the following parts:

Part

Description

52

object A valid WebCacheltem object
value A String value.

Data Type

String

Example

' Thi s exanpl e dempnstrates how to use the
'header property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"variabl e di mensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWwebCacheltem As New WebCachel t em
Set aWebCacheltem = aWebCache. | t en(0)

debug. pri nt aWebCachel t em header

Id

Returns the cached items Id that is used by the ISAPI filter - Read Only.

Syntax

[val ue =]object.Id
The Id property syntax has the following parts:

Part Description

object A valid WebCacheltem object
value A String value.

Data Type

String

Example

' Thi s exanpl e denpnstrates how to use the

"Id property of the WebCachltem cl ass.

"In the exanple "aWebCache" is a pre-existing
"vari abl e di mensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWwebCacheltem As New WebCachel t em
Set aWebCacheltem = aWebCache. | t en(0)

debug. pri nt aWebCacheltem | d

Persistence
Determines when the cached item will be destroyed - Read/Write.

Syntax
obj ect. Persi stence [= val ue]
The Persistence property syntax has the following parts:

Part

Description

object A valid WebCacheltem object

value A PersistenceTypes value.

Settings

The settings for value are

Setting Description

ddPermanent 1 - Cached item will stay alive forever. The item has
to be destroyed using an explicit WebCache.Remove
call.

ddTimeout 2 - Cached item will remain in the cache for a time
period specified by the end user via the
WebCacheltem's Timeout property. A possible usage
scenario is setting the Timeout property to the
SessionTimeout value under IIS.

ddAccessedOnce 3 - Cached item is destroyed immediately after the
client accesses the data one time.

Data Type

PersistenceTypes

Example

' Thi s exanpl e denpnstrates how to use the

' Persistence property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"variabl e di mensi oned as webcache and it

' has been popul ated with a webcacheitem

Di m awebCacheltem As New WebCacheltem
Set aWebCacheltem = aWebCache. | t en(0)

aWebCachel t em Persi stence = 2

Remarks
Default value = ddAccessedOnce

TimeOut

Determines the time in minutes that a cached item will remain in the cache - Read/Write.

Note: The Timeout property is only used if the persistence property of the WebCacheltem is set
to 2 - ddTimeout

Syntax
obj ect. Ti meQut [= val ue]
The TimeOut property syntax has the following parts:

Part Description

54

object A valid WebCacheltem object
value A Long value.

Data Type
Long

Example

' Thi s exanpl e dempnstrates how to use the

" Ti meout property of the WebCachltem cl ass.
"In the exanpl e "aWebCache" is a pre-existing
"variabl e di mensi oned as webcache and it

'has been popul ated with a webcacheitem

Di m aWwebCacheltem As New WebCachel t em
Set aWebCacheltem = aWebCache. | t en(0)

aWebCachel tem Ti meout = 2

Remarks
Default value = 0

WebCacheWorkerThread

Name Type Description

AveragePerRequest Property Returns the average number of milliseconds per
request.

NumberOfRequest Property Returns the number of requests that the thread has
serviced.

Threadld Property Returns the id of the WebCacheWorkerThread.

TotalTimeServicingRequest Property Returns the total time used servicing a request in
milliseconds.

AveragePerRequest

Returns the average number of milliseconds per request - Read Only.

Syntax

[val ue=] object. Aver agePer Request
The AveragePerRequest property syntax has the following parts:

Part Description

object A valid WebCacheWorkerThread object
value An Integer value.

Data Type

Integer

Example

'This exanple prints out several properties
"for all of the workerthreads in the workerthreads

'collection. The sanple adds the follow ng properties to a
'standard vb listView control called |stThreads.

Dimaltem As Listltem

Di m aThr ead As WebCacheWor ker Thr ead

Di m aThr eads As New WebCacheWor ker Thr eads
Di m nSi ze As | nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads.|tem(nl ndex)
Set altem = | stThreads. Listltenms. Add(, , CStr(aThread. Threadl D))
altem Subltens(1) = CStr(aThread. Aver agePer Request)
altem Subl t ens(2) CStr (aThr ead. Nunber Of Request)
Next nl ndex

NumberOfRequest
Returns the number of requests that the thread has serviced - Read Only.
Syntax

[val ue=] obj ect. Nunmber Of Request
The NumberOfRequest property syntax has the following parts:

Part Description

object A valid WebCacheWorkerThread object
value A Long value.

Data Type

Long

Example

'This exanple prints out several properties

"for all of the workerthreads in the workerthreads
"collection. The sanple adds the followi ng properties to a
"standard vb listView control called |IstThreads.

Dimaltem As Listltem

Di m aThr ead As WebCacheWor ker Thr ead

Di m aThr eads As New WebCacheWbr ker Thr eads
Di m nSi ze As | nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads. |tem(nl ndex)
Set altem = | stThreads. Listltens. Add(, , CStr(aThread. Threadl D))
altem Subltems(1) = CStr(aThread. Aver agePer Request)

56

altem Subltems(2) = CStr(aThread. Nunber Of Request)
Next nl ndex

Threadld
Returns the id of the WebCacheWorkerThread - Read Only.

Syntax

[val ue=] object. Threadld
The Threadld property syntax has the following parts:

Part Description

object A valid WebCacheWorkerThread object
value An Integer value.

Data Type

Integer

Example

'"This exanple prints out several properties
"for all of the workerthreads in the workerthreads
‘collection. The sanple adds the followi ng properties to a
'standard vb listView control called |stThreads.

Thr eadl d, Aver agePer Request, and Nunber of Request .

Dimaltem As Listltem

Di m aThr ead As WebCacheWor ker Thr ead

Di m aThr eads As New WebCacheWor ker Thr eads
Di m nSi ze As | nteger

Di m nl ndex As | nteger

nSi ze = aThreads. Count

For nlndex = 0 To nSize - 1
Set aThread = aThreads. |tem(nl ndex)
Set altem = | stThreads. Listltens. Add(, , CStr(aThread. Threadl D))
altem Subltems(1) CStr(aThread. Aver agePer Request)
altem Subl t ems(2) CStr (aThr ead. Nunmber Of Request)
Next nl ndex

TotalTimeServicingRequest
Returns the total time used servicing a request in milliseconds. The time waiting for a request is
not included. Read Only.

Syntax

[val ue=] object. Total Ti meServi ci ngRequest
The TotalTimeServicingRequest property syntax has the following parts:

Part Description
object A valid WebCacheWorkerThread object
value A Long value.

57

Data Type
Long

Example

Di m numThr eads As New WebCacheWor ker Thr eads
Di m aThread As New WebCacheWor ker Thr ead

Set aThread = numrThreads. |tem 0)

Debug. Pri nt aThread. Threadl D
Debug. Print aThread. Total Ti neSer vi ci ngRequest

WebCacheWorkerThreads

Name Type Description

ltem Method Returns the Thread object at the specified index.

Count Property Returns the number of WebCacheWorkerThreads in the
collection.

ltem

Allows random access to individual nodes within the WebCacheWorkerThreads collection.

Syntax

object.ltem (I ndex As Variant))
The Item method syntax has the following parts:

Part Description

object An expression evaluating to an object of type
WebCacheWorkerThreads.

Index Variant

Example

Di m numThr eads As New WebCacheWor ker Thr eads
Di m aThread as New WebCacheWor ker Thr ead

Set aThread = nunrThreads. |tem 0)

Debug. Print aThread.|d

Count
Returns the current number of WebCacheWorkerThreads.

Syntax

[val ue=] obj ect. count
The Count property syntax has the following parts:

Part Description

object A valid WebCacheWorkerThreads object
value A Integer value.

Data Type

58

Integer

Example

Di m nunmThr eads As WebCacheWor ker Thr eads
Set nunThr eads = New WebCacheWor ker Thr eads

Debug. Print "workerthread count

Property List Objects
PropList Control Object

PropNode Obiject
PropNodes Collection

= " & nunrThreads. Count

PropList

Name Type Description

AllowColumnResize Property Specifies whether the user is allowed to resize the
property list columns.

Backcolor Property Specifies the background color of the property list
control.

BorderStyle Property Specifies the border style of the control.

Categorized Property Sets/returns if property list nodes are categorized or
alphabetical.

Enabled Property Determines whether the property list control is
enabled or disabled.

Font Property Specifies the font used to render text in the property
list control.

ForeColor Property Specifies the foreground color of the property list.

hwnd Property Returns the property list window handle.

Properties Property Returns property nodes collection.

ShowDescription Property Sets/returns if property description pane is visible.

ShowObjectCombobox Property Sets/returns if object combobox is visible.

ShowReadOnlyProp Property Sets/returns weather read only properties are shown.

ShowToolbar Property Sets/returns if toolbar is visible.

Sorted Property Determines whether the properties are sorted
alphabetically in the list.

Clear Method Removes all nodes from the property list.

Refresh Method Updates the propertylistbox with new values.

SelectObjects Method Sets the current selection. Object can be a single
COM object or an array of COM objects

Error Event Fires when an internal error occurs in the property list
control.

FetchData Event Fires when enum combobox dropdown is pressed.

FetchDataDescription Event Fires when combobox is updating its text or listbox.

ObjectChanged Event Fired when user selected a new object from the object
combobox.

59

PropertyChanged

Event

Fires when property value has been changed.

PropertyValidate

Event

Fired before a value is stored in the property node
when user makes a change to the value.

AllowColumnResize
Specifies whether the user is allowed to resize the property list columns.

Syntax

obj ect . Al | owCol utmResi ze [= val ue]
The AllowColumnResize property syntax has the following parts:

Part

object

value

Settings

The settings for value are:

Setting
True
False

Data Type
Boolean

Remarks
Default value = True

Description
A valid ProplList object
A Boolean value.

Description
Allows user to resize the property list columns.
Does not allow the user to size the columns.

BackColor

Specifies the background color of the property list control.

Syntax

obj ect . BackCol or [= val ue]
The BackColor property syntax has the following parts

Part
object
value

Data Type
OLE_COLOR

Remarks

Description
A valid ProplList object
A valid color value.

Default value = vbWindowBackColor

BorderStyle

60

Specifies the border style of the control.

Syntax
obj ect . Border Styl e [= val ue]
The BorderStyle property syntax has the following parts:

Part Description

object A valid ProplList object
value A ddPLBorderStyle setting.
Settings

The settings for value are

Setting Description
ddPLNone 0 - No border.
ddPLSunken 1 - Sunken border.
Data Type

ddPLBorderStyle

Remarks

Default value = ddPLSunken

Categorized
Sets/returns if property list nodes are categorized or alphabetical.

Syntax

obj ect. Cat egori zed [= val ue]

The Categorized property syntax has the following parts:

Part Description

object A valid ProplList object

value A Boolean value.

Settings

The settings for value are:

Setting Description

True Property list nodes are categorized in a treeview.
False Property list nodes are listed alphabetically.
Data Type

Boolean

Remarks

Default value = True

Enabled

Determines whether the property list control is enabled or disabled.

Syntax
object.Enabled [= value]
The Enabled property syntax has the following parts:

Part Description

object A valid ProplList object

value A Boolean value.

Settings

The settings for value are:

Setting Description

True Property list control is enabled.
False Property list control is disabled.
Data Type

Boolean

Remarks

Default value = True

Font

Specifies the font used to render text in the property list control.
Syntax

obj ect. Font [= val ue]

The Font property syntax has the following parts:

Part Description

object A valid ProplList object
value A valid Font object.
Data Type

Font

ForeColor
Specifies the foreground color of the property list.

Syntax
obj ect . ForeCol or [= val ue]
The ForeColor property syntax has the following parts:

Part Description

62

object A valid ProplList object.
value A valid OLE_COLOR value.

Data Type
OLE_COLOR

Remarks
Default value = vbWindowText

hwnd

Returns the property list window handle.

Syntax
value = object.hWnd
The hwnd property syntax has the following parts:

Part Description

object A valid ProplList object.

value Returns the property list window handle.
Data Type

OLE_HANDLE

Properties

Returns property nodes collection.

Syntax
Set value = object.Properties
The Properties property syntax has the following parts:

Part Description

object Avalid object

value A valid PropNodes collection.
Data Type

IPropNodes

ShowDescription
Sets/returns whether property description pane is visible.

Syntax
obj ect. ShowDescri ption [= val ue]
The ShowDescription property syntax has the following parts:

Part Description
object A valid ProplList object

63

value A Boolean value.
Settings
The settings for value are

Setting Description
True Description pane is visible.
False Description pane is not visible.

Data Type

Boolean

Remarks
Default value = True

ShowObjectCombobox

Sets/returns whether object combobox is visible.

Syntax
obj ect . ShowObj ect Combobox [= val ue]
The ShowObjectCombobox property syntax has the following parts:

Part Description

object A valid ProplList object

value A Boolean value.

Settings

The settings for value are:

Setting Description

True Displays the objects combobox.
False Hides the objects combobox.
Data Type

Boolean

Remarks

Default value = True

ShowReadOnlyProp

Sets/returns weather read only properties are shown.

Syntax
obj ect . ShowReadOnl yProp [= val ue]
The ShowReadOnlyProp property syntax has the following parts:

Part Description

64

object
value

Settings
The settings for value are:

Setting
True
False

Data Type
Boolean

Remarks
Default value = True

A valid ProplList object
A Boolean value.

Description
Displays the read only properties.
Hides the read only properties.

ShowToolbar

Sets/returns whether toolbar is visible.

Syntax

obj ect . ShowTool bar [= val ue]

The ShowToolbar property syntax has the following parts:

Part
object
value

Settings
The settings for value are:

Setting
True
False

Data Type

Boolean

Remarks
Default value = True

Description
A valid ProplList object
A Boolean value.

Description
Displays the toolbar.
Hides the toolbar.

Sorted

Determines whether the properties are sorted alphabetically in the list.

Syntax
obj ect. Sorted [= val ue]

The Sorted property syntax has the following parts:

Part Description

object A valid ProplList object
value A Boolean value.
Settings

The settings for value are:

Setting Description
True Properties are sorted alphabetically..
False Properties are listed in the order they were added.

Data Type
Boolean

Remarks
Default value = True

AddObject

Adds an object reference to the property listbox and updates the combobox list.

Syntax

obj ect _AddObj ect (newObj ect As Obj ect)
The AddObject method syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
newObject Object

Example

Add an object to the property |ist
plist.AddObj ect Textl
plist. AddObj ect Text2

Clear
Removes all nodes from the property list.

Syntax
obj ect _Cl ear ()
The Clear method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
Refresh

Updates the propertylistbox with new values.

Syntax
obj ect _Refresh()

66

The Refresh method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.

SelectObjects

Sets the current selection. Object can be a single COM object or an array of COM objects.

Syntax

obj ect _Sel ect Obj ect s(sel Obj ect As Vari ant)
The SelectObjects method syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
selObject Variant - a single object or an array of objects.
Example

Sel ect a single object to the property |ist
plist.Sel ectObjects Textl

Select nmultiple objects (property |ist would
aggregate common properties).
plist.Sel ectObjects Array(Textl, Text2, Text3)

ButtonClick

Fires when a button on ddPLButton property is clicked.

Syntax

obj ect _ButtonClick(property As |PropNode)
The ButtonClick event syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
property IPropNode

Example

Handl e the border property with a custom di al og
Private Sub PropertylListl ButtonClick(property as |PropNode)

| f property. Name = "Border" Then
frmBor der s. Show vbMbdal
End |f
End Sub
Error

Fires when an internal error occurs in the property list control.

Syntax

obj ect _Error ((Number As Integer, Description As ReturnString, Scode As Long,
Source As String, HelpFile As String, Hel pContext As Long,
Cancel Di spl ay As ReturnBool))

The Error event syntax has the following parts

67

Part Description

object An expression evaluating to an object of type PropList.
Number Integer - Error number.

Description ReturnString - Brief description of the error.

Scode Long - Result code.

Source String - Error source.

HelpFile String - Help file.

HelpContext Long - Help context id.

CancelDisplay ReturnBool - Boolean variable, used to suspend the built-in

error message box.

Example

' Handl e PropertyList errors

Private Sub PropertyListl Error(Nunmber As Integer, Description As ReturnString,
SCode As Long, Source As String,
Hel pFile As String, Hel pContext As Long,
Cancel Di spl ay As Bool ean)

' Display the error nunber and description to a fornml s status bar instead
of an error message box

st atusbar 1. Panel s(1). Text = "Error: " & Str(Nunmber) & " - " & Description
Cancel Di splay = True

End Sub

FetchData

Fires when enum combobox dropdown is pressed. You can change the items in the combobox
by using node.ClearEnums and node.AddEnum methods.

Syntax

obj ect _FetchDat a((property As | PropNode))
The FetchData event syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
property IPropNode

Example

Private Sub pl _FetchData(ByVal property As DDPropertyListCtl.|PropNode)
Sel ect Case property. Name
Case "State"
property. Cl ear Enuns
property. AddEnum "AL", "Al abam"
property. AddEnum "CA", "California"
property. AddEnum "OH", " Chi o"
property. AddEnum "NC', "North Carolina"
End Sel ect
End Sub

FetchDataDescription

Fires when comobox is updating its text or listbox. You can use this event to provide alternate
description string for each enum value.

68

Syntax

obj ect _FetchDat aDescri pti on((property As |PropNode, Value As Variant, Description As
Vari ant))

The FetchDataDescription event syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
property PropNode

Value Variant

Description Variant

Example

Thi s exanple nodifies the descriptions of all boolean properties to Gernman
Private Sub PropListl_FetchDataDescri ption(ByVal property As DDPropertyListCl.|PropNode,

ByVal Value As Variant, Description As Vari ant)
I f property. Type = ddPLBool ean Then
If (Value = True) Then

Description = "Ja"
El se
Description = "Nein"
End | f
End |If
End Sub
ObjectChanged
Fired when user selected a new object from the object combobox.
Syntax

obj ect _Obj ect Changed((newObj ect As Obj ect))
The ObjectChanged event syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
newObject Object - a reference to the new selected object.
PropertyChanged

Fires when property value has been changed.

Syntax

obj ect _PropertyChanged((property As |PropNode))
The PropertyChanged event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the changed property nodes.

PropertyValidate
Fired before a value is stored in the property node when user makes a change to the value.
Used to validate an entry.

69

Syntax

obj ect _PropertyVal i date((property As |PropNode, newval ue As Variant, Cancel As Bool ean))
The PropertyValidate event syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropList.
property PropNode - a reference to the current property.
newValue Variant - new property value.

Cancel Boolean - by ref parameter, allows you to cancel the change.
PropNode

Name Type Description

AddEnum Method Adds a new enumeration value to the property
ClearEnums Method Clear all enumeration values for property
Category Property Sets/returns optional property category name.
Children Property Returns child property collection.

Description Property Sets/returns description for property.

Name Property Sets/returns property name.

Type Property Sets/returns Ul type for property.

Value Property Sets/returns value of property

AddEnum

Adds a new enumeration value to the property.

Syntax

obj ect . AddEnum(Val ue As Variant, Description As Variant)
The AddEnum method syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropNode.
Value Variant - value of the enum.

Description Variant - description of the enum.

Example

Private Sub pl_FetchDat a(ByVal property As DDPropertylListCtl.| PropNode)
Sel ect Case property. Nanme
Case "State"
property. Cl ear Enuns
property. AddEnum "AL", "Al abam"
property. AddEnum " CA", "California"
property. AddEnum " OH", " Ohi o"
property. AddEnum "NC', "North Carolina"
End Sel ect
End Sub

ClearEnums
Clear all enumeration values for property.

Syntax

70

obj ect . Cl ear Enuns()
The ClearEnums method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNode.
Example

Private Sub pl _FetchData(ByVal property As DDPropertyListCtl.|PropNode)
Sel ect Case property. Nanme
Case "State"
property. Cl ear Enuns
property. AddEnum "AL", "Al abam"
property. AddEnum " CA", "California"
property. AddEnum " OH", " Ohi o"
property. AddEnum "NC', “North Carolina"
End Sel ect
End Sub

Category

Sets/returns optional property category name.

Syntax
obj ect. Category [= val ue]
The Category property syntax has the following parts:

Part Description

object A valid PropNode object
value A String value.

Data Type

String

Children

Returns child property collection.

Syntax
obj ect. Children [= val ue]
The Children property syntax has the following parts:

Part Description

object A valid PropNode object
value A PropNodes Collection.
Data Type

IPropNodes

Example

Create a conpl ex property Address with child nodes.
Set nod = New PropNode
nod. Cat egory = "Address"
nod. Name = "Tel ephone"

71

nod. Type = ddPLLabel

Set subNod = New PropNode
subNod. Cat egory = "Address"
subNod. Namre = " Honme"
subNod. Type = ddPLStri ng
nod. Chi | dren. Add subNod

Set subNod = New PropNode
subNod. Cat egory = "Address"
subNod. Name = "Busi ness"
subNod. Type = ddPLStri ng
nod. Chi | dren. Add subNod

pl . Properties. Add nod

Description
Sets/returns description for property.

Syntax
obj ect . Description [= val ue]
The Description property syntax has the following parts:

Part Description

object A valid PropNode object
value A String value.

Data Type

String

Name

Sets/returns property name.

Syntax

obj ect. Name [= val ue]

Values

The Name property syntax has the following parts:

Part Description

object A valid PropNode object
value A String value.

Data Type

String

Type

Sets/returns Ul type for property.

Syntax
obj ect. Type [= val ue]
The Type property syntax has the following parts:

72

Part Description

object A valid PropNode object
value A ddPLNodeType setting.
Settings

The settings for value are:

Setting Description

ddPLString 0 -A string property.
ddPLLabel 1 - A static label.
ddPLEnum 2 - An enumerated property editor.
ddPLBoolean 3 - A Boolean property editor.
ddPLColor 4 - A color property editor.

ddPLStringCombo

5 - A string editor with a combobox.

ddPLPicture

6 - A picture property editor.

ddPLFont

7 - A font property editor.

ddPLButton

16 - Adds a custom button to the property editor, can
be combined with any of the other types.

Data Type
ddPLNodeType

Value

Sets/returns value of property. Call the refresh method to update the property listbox with the

new value.

Syntax

obj ect. Val ue [= val ue]

Values

The Value property syntax has the following parts:

Part Description

object A valid PropNode object

value A Variant value.

Data Type

Variant

PropNodes

Name Type Description

Add Method Adds the specified node object to the collection.

Count Method Returns the number of property nodes in the
collection.

Item Method Returns the property node object at the specified
index.

73

Remove

Method

Removes a node from the collection at the specified
index

Add

Adds the specified node object to the collection.

Syntax

obj ect . Add(property As PropNode)

The Add method syntax has the following parts:

Part
object

property
Example

Set

nod = New PropNode
nod. Cat egory
nod. Name
nod. Type

" Addr ess"

ddPLEnum

pl . Properties. Add nod

Description
An expression evaluating to an object of type PropNodes.
PropNode object to be added.

Count

Returns the number of property nodes in the collection.

Syntax

obj ect . Count ()

The Count method syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropNodes.
ltem

Returns the property node object at the specified index.

Syntax

obj ect.ltem(|l ndex As Vari ant)

The Item method syntax has the following parts:

Part Description

object An expression evaluating to an object of type PropNodes.
Index Variant

Remove

Removes a node from the collection at the specified index.

Syntax

obj ect. Renove(l ndex As Vari ant)

The Remove method syntax has the following parts:

74

Part
object
Index

Description
An expression evaluating to an object of type PropNodes.
Variant - Index of the node to be removed from the collection.

75

Support and Licensing

License Agreement and Limited Warranty

The product in this package (libraries and object code) is proprietary to Data Dynamics, Ltd. and
is protected by Federal Copyright Law. Data Dynamics retains the title to and ownership of the
Product. You are licensed to use this Product on the following terms and conditions:

LICENSE: The licensee is defined as the individual software developer utilizing the Product.

This license is not for an entire company but for a single developer. Data Dynamics hereby
grants the licensee a nonexclusive license authorizing the licensee to use the enclosed Product
on one computer at a time for development purposes. Distribution of the application(s) using
ActiveReports is royalty-free, requiring no additional license fees. You may incorporate the
sample code into your applications. Use of this product by more than one individual or by anyone
other than the licensee terminates, without notification, this license and the right to use this
product.

YOU MAY NOT: Distribute, rent, sub-license or otherwise make available to others the software
or documentation or copies thereof, except as expressly permitted in this License without prior
written consent from Data Dynamics. In the case of an authorized transfer, the transferee must
agree to be bound by the terms and conditions of this License Agreement.

RESTRICTIONS: You may use this Product in your business application for sale or distribution
as long as:

The product that you produce and/or distribute is NOT a software development product, a product
that is sold primarily to software developers or system integrators or a development environment
of any kind. The product that you produce includes recognition of Data Dynamics’ proprietary
rights in the “Help About” dialog.

The software serial number and user must be registered with Data Dynamics in order to receive
support or distribution rights.

You may not remove any proprietary notices, labels, trademarks on the software or
documentation.

You may not modify, de-compile, disassemble, reverse engineer or translate the software.

FILES THAT MAY BE DISTRIBUTED WITH YOUR APPLICATION: ARPRO2.DLL,
ARDESPRO2.DLL, WEBCACHE.EXE, WEBCACHE.DLL, PDFExpt.DLL, RTFEXpt.DLL,
ARVIEW2.0CX, ARVIEW2.CAB, HTMLEXxpt.DLL, TEXTExpt.DLL, TIFFExpt.DLL and
EXCLEXxpt.DLL.

US GOVERNMENT RESTRICTED RIGHTS: Use, duplication or disclosure by the United States
Government is subject to restrictions as set forth under DFARS 252.227-7013 or in FARS 52.227-
19 Commercial Computer Software - Restricted Rights.

TERM: You may terminate your License and this Agreement at anytime by destroying all copies
of the Product and Product Documentation. They will also terminate automatically if you fail to
comply with any term or condition in this Agreement.

LIMITED WARRANTY: This software and documentation are sold "as is" without any warranty
as to their performance, merchantability or fitness for any particular purpose. The licensee

77

assumes the entire risk as to the quality and performance of the software. Data Dynamics
warrants that the media on which the Program is furnished will be free from any defects in
materials. Exclusive remedy in the event of a defect is expressly limited to the replacement of
media. In no event shall Data Dynamics or anyone else who has been involved in the creation,
development, production, or delivery of this software be liable for any direct, incidental or
consequential damages, such as, but not limited to, loss of anticipated profits, benefits, use, or
data resulting from the use of this software, or arising out of any breach of warranty.

Support

Registration

Technical Support

Data Dynamics Web Site
Data Dynamics News Server
Upgrades

Suggestions

O O O O o o o

Defects Policy

0 License Agreement
Product Registration

In order to receive telephone support and product news and upgrade announcements, you must
register your product purchase with Data Dynamics. We encourage you to register your
purchase as soon as you receive it using any of the following:

Fill out the enclosed registration card and mail it to Data Dynamics, 2600 Tiller Lane, Columbus,
Ohio 43231 or fax it to Data Dynamics at (614) 899-2943.

Or, you can use our online registration form on our web site at http://www.datadynamics.com
Technical Support
If you are having problems using ActiveReports 2.0, please make sure the control is properly

registered by the installation program. If not, use RegSvr32.exe to register the ActRpt2.dll,
ARView2.ocx and ARDesign2.DLL files.

Note: RegSvr32.EXE is included with the Visual Basic installation.

If the problem remains, and no solution is listed on our support web site or newsgroups server,
please contact our technical support staff.

Note: Telephone support is only available to registered customers.

Registered users are allowed up to five support incidents resolved over the telephone. Additional
support requests should be directed to our newsgroup. If desired, additional telephone support
can be acquired by purchasing any of our support packages. Contact sales@datadynamics.com
for details.

Be Prepared:

78

When contacting Data Dynamics with support questions, be prepared to provide a serial number,
the full version number of ActiveReports, a complete description of the problem, and hardware
and operating environment specifications.

Web Sites

http://www.datadynamics.com - Data Dynamics' Official Web page.

http://www.datadynamics.com/support - Data Dynamics' Support page. A source for patches,
updates and product downloads.

http://www.datadynamics.com/kb - Data Dynamics' Knowledgebase. Search the knowledgebase
to find help with common problems, "How To" articles and downloaded able samples.

FTP

ftp://ftp.datadynamics.com/activereports2 - Data Dynamics' FTP site. A source for finding sample
projects.

Newsgroups

news://news.datadynamics.com - Data Dynamics' Newsgroups. A source for finding out how
other ActiveReports developers are using the product.

Email

activereports.support@datadynamics.com

Telephone and Fax

Fax: 614.899.2943

Telephone: 614.895.3142 (9 a.m. to 5 p.m. EST, M-F)

Web Site

Our web site will be updated with the latest product news, white papers, tutorials, report samples
and product service packs. Please visit our web site for the latest news about the product before
contacting technical support. You will likely find the answers you are seeking.

Web server address: http://www.datadynamics.com

NewsGroups

Use our news server to read and post questions and answers. Communicate tips and tricks with
other users and get access to our technical support in an online community forum. Our Technical
Support Engineers monitor the newsgroups continually and they will be there to answer questions
and assist with any issues you might encounter using the product. Product announcements will
also be posted to the news server.

News server address: news.datadynamics.com

Product Upgrades

Minor upgrades and service packs will be made available for download from our web site free of
charge.

Major upgrades will carry an upgrade price that is determined separately for each release. You
will be entitled to a free major upgrade if you purchased within 30 days of the upgrade release
date.

79

Suggestions

We at Data Dynamics welcome your suggestions for improving ActiveReports. Much of the initial
feedback has been included in this version of ActiveReports. Please contact us through any of
the above channels to tell us how we can improve.

Media Defects Policy

Data Dynamics is committed to producing a quality product that undergoes an extensive series of
tests and refinements at both the manufacturing and development levels. In the unfortunate case
that you receive defective media, Data Dynamics will replace your media free of charge. Please
contact us at the above address to get your replacement media.

80

Index

ActiveReports NewsGroups 79
ActiveReports' Web Site 79
Add 74
AddCode 19, 21, 22
AddEnum 68, 70, 71
AddNamedItem 20, 21, 22
AddObiject 66
Alert 4, 22, 26, 40, 41
AllowColumnResize 59, 60

ARDesigner 25, 26, 27, 28, 29, 30, 31, 32,
33, 35, 36, 37, 39, 42, 46

AveragePerRequest 55, 56, 57
Backcolor 59
BackColor 36, 60
BorderStyle 59, 61
ButtonClick 33, 67
CacheContent 24, 47, 48, 49
Cacheltem 47, 48, 49, 50
Categorized 59, 61
Category 70,71,72,74
Children 70,71, 72
Clear 31, 59, 66, 70, 71
ClearEnums 68, 70, 71
ContextMenuOpen 23, 26, 41
ContextMenuTypes 41
Count 47,51, 58, 74
Data 52
ddPLBorderStyle 61
ddPLNodeType 73
ddRulerUnits 30
Defective Disk Policy 80
Deployment 4,23, 24
Description 70, 72
Distribution 4,23

Enabled 17, 18, 19, 21, 22, 39, 45, 59, 62
Error 3,4, 8,12, 13, 17, 18, 20, 21, 22, 26,
39, 42, 60, 67, 68

ExecuteAction 3, 16, 22, 25, 33, 35

FetchData 60, 68, 70, 71
FetchDataDescription 60, 69
Font 59, 62
ForeColor 59, 62, 63
GridSnap 3, 25, 26
GridVisible 3, 25,27

GridX 3, 25,27
GridY 3, 25, 28
Header 52
hwnd 59, 63
Id 52, 53

ISAPI 2,23, 24,52,53
IsCached 47, 50
IsDirty 2, 25, 28
Item 47,58, 74
LayoutChanged 3, 14, 18, 26, 42, 43
License Agreement and Warranty 77
LoadFromObject 2, 13, 14, 18, 25, 36, 37
Locked 25, 29
Name 70, 72
NewLayout 2,25, 37
NumberOfRequest 55, 56, 57
ObjectChanged 60, 69
Persistence 2,52,54
PersistenceTypes 54
Product Support and Licensing 78
Properties 59, 63
Property List 2,23, 25,59
PropertyChanged 60, 69
PropertyValidate 60, 70

PropList 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70

PropNode 59, 69, 70, 71, 72, 73, 74
PropNodes 59, 63, 71, 73, 74, 75
QueryStatus 2,19, 22, 26, 37, 39, 44, 45
Refresh 59, 66
Registration 78
Remove 47,51, 74
RemoveAll a7
Report

property 25
RulerUnits 3, 25,30

Runtime Designer 2,4,5,6, 10, 13, 25
SaveToObject 2,8, 12, 17, 20, 22, 26, 30,
39

Script 3,15, 20, 21, 22, 34, 38, 44
ScriptLanguage 3
SelChange 3, 14, 19, 26, 31, 43, 47

SelectedObjects3, 14, 17, 19, 25, 30, 31, 43,
47

8l

SelectObjects 31, 59, 67
ShowDescription 59, 63, 64
ShowObjectCombobox 59, 64
ShowReadOnlyProp 59, 64, 65
ShowToolbar 59, 65
Sorted 59, 65, 66

StatusChange 3, 14, 19, 22, 26, 39, 43, 44,
45

Suggestions 80
Support 78, 79
Threadld 55, 56, 57
Timeout 52, 54, 55
Toolbarldentifiers 31, 32

ToolbarsAccessible 2, 7, 13, 14, 22, 25, 31,
32,33

ToolbarsVisible 2,7, 13, 14, 22, 25, 32, 33

Toolboxltem 3, 25,33
TotalTimeServicingRequest 55, 57, 58
Type 70, 72
Upgrades 79
ValidateChange 3, 14, 16, 19, 26, 46
Value 70, 73
WebCache 2, 23, 24, 25, 47, 48, 49, 50, 51,
52,54
WebCache service 23, 24

WebCacheltem 47,52, 53, 54, 55
WebCacheWorkerThread 47, 55, 56, 57, 58
WebCacheWorkerThreads 47, 56, 57, 58, 59

82

